Solutions to Practice Problems for Math 23 Final

Chapter 7:

1. $\mathbf{x}=c_{1} e^{2 t}\binom{1}{1}+c_{2}\left[t e^{2 t}\binom{1}{1}+e^{2 t}\binom{1}{0}\right]$

Chapter 9:

2. The critical points are $(0,0)$ and $(2,3)$. The point $(0,0)$ is an asymptotically stable node. The point $(2,3)$ is an unstable saddle point.

Chapter 5:

3. (a) $x_{0}=1$ is regular singular, $x_{0}=-2$ is singular but not regular, $x_{0}=0$ is ordinary.
(b) $x_{0}=1$ and $x_{0}=0$ are both regular singular, $x_{0}=-2$ is ordinary.
4. (a) $y_{1}=1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\cdots$ and $y_{2}=x-\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\cdots$
(b) $y_{1}=x-\frac{1}{4} x^{3}+\frac{1}{48} x^{5}+\cdots$ and $y_{2}=-\ln (x) y_{1}+x^{-1}\left(1-\frac{3}{16} x^{4}+\frac{7}{288} x^{6}+\cdots\right)$
5. For part (a) of the previous problem:
(a) The Wronskian is 1 .
(b) Lower bound is 1 .
(c) $y_{1}+2 y_{2}$

Chapter 10:

6. $f(x)=\frac{1}{2}+\frac{1}{\pi n} \sum_{n=1}^{\infty} \sin (2 n \pi x)$
7. $u(x, t)=\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(1-(-1)^{n}\right) \sin (n x) e^{2 n^{2} t}$
8. $u(x, t)=\frac{8}{\pi^{2} n^{2}} \sum_{n=1}^{\infty} \sin (n \pi x / 4)\left[\frac{8}{\pi n}\left((-1)^{n}-1\right) \cos (n \pi t / 4)+\left(1-(-1)^{n}\right) \sin (n \pi t / 4)\right]$
