Practice Problems for Math 23 Final

NOTE: This review only includes new material. However, the final exam is cumulative and may include questions from the first half of class.

Chapter 7:

1. Find the general solution to the following system of differential equations:

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right) \boldsymbol{x}
$$

Chapter 9:

2. Consider the nonlinear system of equations. Find all critical points and determine their type and stability.

$$
\begin{aligned}
x^{\prime} & =x(y-3) \\
y^{\prime} & =y(x-2)
\end{aligned}
$$

Chapter 5:

3. For each differential equation, determine whether each of the points $x_{0}=1$, $x_{0}=-2$, and $x_{0}=0$ is ordinary or singular. If it is singular, determine whether it is regular.
(a) $(x+2)^{2}(x-1) y^{\prime}+3(x-1) y^{\prime \prime}-2(x+2) y=0$
(b) $\left(x^{2}-x\right) y^{\prime \prime}+y=0$
4. For each, find the first 3 nonzero solutions to each of the series solutions.
(a) $(1-x) y^{\prime \prime}+x y^{\prime}+y=0$ around $x_{0}=0$.
(b) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(2 x^{2}-1\right) y=0$ around $x_{0}=0$.
5. For part (a) of the previous problem:
(a) Show that y_{1} and y_{2} form a fundamental set of solutions.
(b) Determine a lower bound for the radius of convergence for the series solution.
(c) Find the solution given that $y(0)=1$ and $y^{\prime}(0)=2$.

Chapter 10:

6. Find the Fourier series for the periodic function $f(x)$ which is defined on the interval $0 \leq x<1$ to be

$$
f(x)=1-x,
$$

and defined outside of that interval to be $f(x+1)=f(x)$.
7. Describe the method of separation of variables and explain why it is useful.
8. Suppose $u(x, t)$ describes the temperature of a rod of length π at time t for $t \geq 0$ and position x for $0 \leq x \leq \pi$ and satisfies the heat equation

$$
4 u_{x x}=u_{t}
$$

If we assume that the endpoints of the rod are kept at temperature 0 and $u(x, 0)=10$ for all $0<x<\pi$, then find the formula for $u(x, t)$.
9. Suppose $u(x, t)$ describes the displacement of an elastic string of length 4 and satisfies the wave equation

$$
u_{x x}=u_{t t} .
$$

Assume that the endpoints are kept fixed, and that $u(x, t)$ satisfies initial conditions

$$
u(x, 0)=x^{2}-4 x
$$

and

$$
u_{t}(x, 0)=1
$$

Find a formula for $u(x, t)$.

