Math 23, Spring 2007

Lecture 8
Last class
Today's material

Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College

4/13/07

Outline

Last class

Today's material

Wronskian
 Constant coefficient ODE Complex roots

Group work

Next class

Material from last class

- Existence and uniqueness for linear second order equations
- Wronskian: solving initial value problems

The Wronskian and linear dependence

Definition

Two functions are said to be linearly dependent if we can find a linear combination which is identically zero. If no such linear combination exists, the functions are said to be linearly independent.

Example

$$
y_{1}(t)=\cos ^{2}(t), y_{2}(t)=1+\cos (2 t)
$$

The Wronskian and linear dependence

Definition

Two functions are said to be linearly dependent if we can find a linear combination which is identically zero. If no such linear combination exists, the functions are said to be linearly independent.

Example

$$
y_{1}(t)=\cos ^{2}(t), y_{2}(t)=1+\cos (2 t)
$$

The Wronskian and linear dependence

Theorem
If f and g are differentiable functions on an open interval I linearly independent on I. Moreover, if f and g are linearly dependent on I, then $W(f, g, t)=0$ for all $t \in I$.
Q: How can we interpret this theorem in terms of our
ability to solve an initial value problem?

The Wronskian and linear dependence

Theorem
If f and g are differentiable functions on an open interval I linearly independent on I. Moreover, if f and g are linearly dependent on I, then $W(f, g, t)=0$ for all $t \in I$.
Q: How can we interpret this theorem in terms of our ability to solve an initial value problem?

Abel's Theorem

Theorem
If y_{1} and y_{2} are solutions to

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on an open interval I then

$$
W\left(y_{1}, y_{2}, t\right)=c \exp \left(-\int p(t) d t\right)
$$

where c is a certain constant that depends on y_{1} and y_{2} but not t. Further, W is either identically zero on I (if $c=0$) or is never zero.

Linear homogeneous second order constant coefficient equations

Complex Roots

When solving

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

we focused first on the case when there are two real roots, leaving two cases

1. $r_{1}=r_{2}$ (a repeated root)
2. $b^{2}-4 a c<0$ (complex roots)

Linear homogeneous second order constant coefficient equations
Complex Roots

We will focus first on the second case:

$$
r=\frac{-b}{2 a} \pm i \frac{\sqrt{4 a c-b^{2}}}{2 a}=\alpha \pm i \beta
$$

Such roots are called complex conjugates and, formally, the solutions to the ODE are given by

$$
y_{1}(t)=e^{(\alpha+i \beta) t}, y_{2}(t)=e^{(\alpha-i \beta) t}
$$

Q: How do we interpret these functions?

Linear homogeneous second order constant coefficient equations

Complex Roots

Scott Pauls

We will focus first on the second case:

$$
r=\frac{-b}{2 a} \pm i \frac{\sqrt{4 a c-b^{2}}}{2 a}=\alpha \pm i \beta
$$

Such roots are called complex conjugates and, formally, the solutions to the ODE are given by

$$
y_{1}(t)=e^{(\alpha+i \beta) t}, y_{2}(t)=e^{(\alpha-i \beta) t}
$$

Q: How do we interpret these functions?

Linear homogeneous second order constant coefficient equations
Euler's equation

We use Euler's equation:

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Idea of the proof:

$$
=\cos (x)+i \sin (x)
$$

Linear homogeneous second order constant coefficient equations

Euler's equation

We use Euler's equation:

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Idea of the proof:

$$
\begin{aligned}
e^{i x} & =\sum_{n=0}^{\infty} \frac{(i x)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}+i \sum_{n=0}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!} \\
& =\cos (x)+i \sin (x)
\end{aligned}
$$

Linear homogeneous second order constant coefficient equations
Complex roots

Using this formula, we have

$$
\begin{aligned}
& y_{1}=e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}=e^{(\alpha-i \beta) t}=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \tilde{y}_{1}=\frac{1}{2}\left(y_{1}+y_{2}\right)=e^{\alpha t}(\cos (\beta t)) \\
& \tilde{y}_{2}=\frac{1}{2 i}\left(y_{1}+y_{2}\right)=e^{\alpha t}(\sin (\beta t))
\end{aligned}
$$

Q: Do these form a fundamental set of solutions?

Linear homogeneous second order constant coefficient equations
Complex roots

Using this formula, we have

$$
\begin{aligned}
& y_{1}=e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}=e^{(\alpha-i \beta) t}=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \tilde{y}_{1}=\frac{1}{2}\left(y_{1}+y_{2}\right)=e^{\alpha t}(\cos (\beta t)) \\
& \tilde{y}_{2}=\frac{1}{2 i}\left(y_{1}+y_{2}\right)=e^{\alpha t}(\sin (\beta t))
\end{aligned}
$$

Q: Do these form a fundamental set of solutions?

1. Given two complex roots, $\alpha \pm i \beta$ of the characteristic equation of an ODE, show that the resulting solutions y_{1} and y_{2} are linearly independent for all values of t.
2. What does Abel's theorem tell us about the first question?
3. Solve

$$
y^{\prime \prime}+4 y=0
$$

subject to the initial conditions:
$3.1 y(0)=0, y^{\prime}(0)=1$
$3.2 y(0)=1, y^{\prime}(0)=1$

Work for next class

- Reading: 3.4,2.5
- Homework 3 is due monday 4/16

