Math 23, Spring 2007 Lecture 6

Scott Pauls 1

¹Department of Mathematics Dartmouth College

4/9/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Outline

Last class

Today's material

Second order equations Linear second order equations Qualitative behavior

Group work

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Vext class

・ロト・西・・田・・田・・日・

Material from last class

- Models via first order equations
- Refinement and augmentation

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Vext class

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

General second order equations

The most general second order equation is of the form:

$$\frac{d^2y}{dt^2} = f(t, y, y')$$

Such an equation is said to be linear if

$$f(t, y, y') = g(t) - p(t)y' - q(t)y$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

General second order equations

The most general second order equation is of the form:

$$\frac{d^2y}{dt^2} = f(t, y, y')$$

Such an equation is said to be linear if

$$f(t, y, y') = g(t) - p(t)y' - q(t)y$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Linear second order equations

Two forms

$$y'' + p(t)y' + q(t)y = g(t)$$

or

$$P(t)y'' + Q(t)y' + R(t)y = g(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

These are equivalent when $P(t) \neq 0$.

If g(t) = 0, the equation is called *homogeneous*. Otherwise, it is called *inhomogeneous*. Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

lext class

Linear second order equations

Two forms

$$y'' + p(t)y' + q(t)y = g(t)$$

or

$$P(t)y'' + Q(t)y' + R(t)y = g(t)$$

These are equivalent when $P(t) \neq 0$. If g(t) = 0, the equation is called *homogeneous*. Otherwise, it is called *inhomogeneous*. Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Vext class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Linear homogeneous second order equations

Solutions for constant coefficients

Assuming constant coefficients:

$$ay''+by'+cy=0$$

To find solutions, we look at functions of the form $y(t) = e^{rt}$ $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$

Since $e^{rt} \neq 0$ we have the *characteristic equation*:

 $ar^2 + br + c = 0$

which can be solved using the quadratic equation:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Linear homogeneous second order equations

Solutions for constant coefficients

Assuming constant coefficients:

$$ay''+by'+cy=0$$

To find solutions, we look at functions of the form $y(t) = e^{rt}$ $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$

Since $e^{rt} \neq 0$ we have the *characteristic equation*:

$$ar^2 + br + c = 0$$

which can be solved using the quadratic equation:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Linear homogeneous second order equations

Solutions for constant coefficients

Example

$$y'' + y' - 2y = 0, y(0) = 1, y'(0) = 1$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Linear homogeneous first order equations

$$r_1, r_2 < 0$$

The limit of *y* as $t \to \infty$ is zero

 $r_1, r_2 > 0$

The limit of y as $t \to \infty$ is $\pm \infty$

 $r_1 > 0, r_2 < 0$

The limit of *y* as $t \to \infty$ is $\pm \infty$. There could be an interaction between the two solutons for small *t*.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Linear homogeneous first order equations

$$r_1, r_2 < 0$$

The limit of *y* as $t \to \infty$ is zero

 $r_1, r_2 > 0$

The limit of *y* as $t \to \infty$ is $\pm \infty$

 $r_1 > 0, r_2 < 0$

The limit of *y* as $t \to \infty$ is $\pm \infty$. There could be an interaction between the two solutons for small *t*.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Linear homogeneous first order equations

$$r_1, r_2 < 0$$

The limit of *y* as $t \to \infty$ is zero

 $r_1, r_2 > 0$

The limit of *y* as $t \to \infty$ is $\pm \infty$

 $r_1 > 0, r_2 < 0$

The limit of *y* as $t \to \infty$ is $\pm \infty$. There could be an interaction between the two solutons for small *t*.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Vext class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Examples:

1.

$$y'' + 4y' + 3y = 0, y(0) = 2, y'(0) = -1$$

2.
 $2y'' + y' - 4y = 0, y(0) = 0, y'(0) = 1$
3.
 $4y'' - y = 0, y(-2) = 1, y'(-2) = -1$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Vext class

<□▶ <□▶ < 臣▶ < 臣▶ < 臣▶ 三臣 のへで

Work for next class

- Reading: 3.2
- xhour tomorrow on elementary linear algebra. Get the handout from our website
- Homework 3 is due monday 4/16

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Second order equations Linear second order equations Qualitative behavior

Group work

Next class

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの