Math 23, Spring 2007
 Lecture 26

Scott Pauls

Department of Mathematics
Dartmouth College

5/25/07

Material from last class

The heat equation

$$
\alpha^{2} u_{x x}=u_{t}
$$

1. with conditions $u(x, 0)=f(x), u(0, t)=u(L, t)=0$: Fourier sine series
2. with conditions $u(x, 0)=f(x), u_{x}(0, t)=u_{x}(L, t)=0$: Fourier cosine series

The wave equation

$$
a^{2} u_{x x}=u_{t t}
$$

1. with conditions

$$
\begin{aligned}
& u(x, 0)=f(x), u_{t}(x, 0)=g(x), u(0, t)=u(L, t)=0 \\
& u(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x / L)\left(a_{n} \cos (n \pi t / L)+b_{n} \sin (n \pi t / L)\right)
\end{aligned}
$$

Laplace's equation

Math 23, Spring 2007

Scott Pauls

Last class

$$
\Delta u=u_{x x}+u_{y y}=0
$$

on a region Ω.
Steady state for heat equation.
Heat equation in 2-d: $\alpha^{2} \Delta u=u_{t}$
Wave equation in 2-d: $a^{2} \Delta u=u_{t t}$
Boundary conditions:

1. Dirichlet: u takes specified values on the boundary of Ω.
2. Neumann: the normal derivative of u takes specified values on the boundary of Ω.

Laplace's equation

$$
\Delta u=u_{x x}+u_{y y}=0
$$

on a region Ω.
Steady state for heat equation.
Heat equation in 2-d: $\alpha^{2} \Delta u=u_{t}$
Wave equation in 2-d: $a^{2} \Delta u=u_{t t}$
Boundary conditions:
Dirichlet: u takes specified values on the boundary of Ω.
2. Neumann: the normal derivative of u takes specified values on the boundary of Ω.

Laplace's equation

$$
\Delta u=u_{x x}+u_{y y}=0
$$

on a region Ω.
Steady state for heat equation.
Heat equation in 2-d: $\alpha^{2} \Delta u=u_{t}$
Wave equation in 2-d: $a^{2} \Delta u=u_{t t}$
Boundary conditions:

1. Dirichlet: u takes specified values on the boundary of Ω.
2. Neumann: the normal derivative of u takes specified values on the boundary of Ω.

Rectangular regions

Dirichlet boundary conditions

Scott Pauls

$$
\begin{gathered}
u(x, 0)=0, u(x, b)=0,0<x<a \\
u(0, y)=0, u(a, y)=f(y), 0<y<a
\end{gathered}
$$

Dirichlet boundary conditions

Laplace's equation in polar coordinates:

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

Boundary condition: $u(a, \theta)=f(\theta)$ Separation of

Note: Θ must be periodic with period 2π.

$$
\lambda>0 \Longrightarrow \Theta=c_{1} \cos (\sqrt{\lambda} \theta)+c_{2} \sin (\sqrt{\lambda} \theta)
$$

and $\sqrt{\lambda}$ must be a positive integer.

$$
\lambda=0 \Longrightarrow \Theta=c_{1}
$$

Dirichlet boundary conditions

Laplace's equation in polar coordinates:

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

Boundary condition: $u(a, \theta)=f(\theta)$ Separation of variables yields:

$$
\begin{gathered}
\Theta^{\prime \prime}+\lambda \Theta=0 \\
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0
\end{gathered}
$$

Note: Θ must be periodic with period 2π.

$$
\lambda>0 \Longrightarrow \Theta=c_{1} \cos (\sqrt{\lambda} \theta)+c_{2} \sin (\sqrt{\lambda} \theta)
$$

and $\sqrt{\lambda}$ must be a positive integer.

Dirichlet boundary conditions

Laplace's equation in polar coordinates:

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

Boundary condition: $u(a, \theta)=f(\theta)$ Separation of variables yields:

$$
\begin{gathered}
\Theta^{\prime \prime}+\lambda \Theta=0 \\
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0
\end{gathered}
$$

Note: Θ must be periodic with period 2π.

$$
\lambda>0 \Longrightarrow \Theta=c_{1} \cos (\sqrt{\lambda} \theta)+c_{2} \sin (\sqrt{\lambda} \theta)
$$

and $\sqrt{\lambda}$ must be a positive integer.

$$
\lambda=0 \Longrightarrow \Theta=c_{1}
$$

Euler equations

Solution to

$$
L(R)=x^{2} R^{\prime \prime}+x R^{\prime}-\lambda R=0
$$

Use series solutions!
Problem: $x=0$ is not an ordinary point.
Alternative method: guess $R=r^{s}$

If $\lambda>0$ then

If $\lambda=0$ we get (using reduction of order for the second solution):

$$
R(r)=C_{1}+C_{2} \ln r
$$

Euler equations

Solution to

$$
L(R)=x^{2} R^{\prime \prime}+x R^{\prime}-\lambda R=0
$$

Use series solutions!
Problem: $x=0$ is not an ordinary point.
Alternative method: guess $R=r^{s}$

$$
s= \pm \frac{\sqrt{4 \lambda}}{2}
$$

If $\lambda>0$ then

$$
R(r)=C_{1} r^{\sqrt{\lambda}}+C_{2} r^{-\sqrt{\lambda}}
$$

If $\lambda=0$ we get (using reduction of order for the second solution):

$$
R(r)=C_{1}+C_{2} \ln r
$$

Putting this together

Most general solution so far:

$$
u(r, \theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(c_{n} \sin (n \theta)+k_{n} \cos (n \theta)\right.
$$

At $r=a$,

$$
u(a, \theta)=f(\theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} a^{n}\left(c_{n} \sin (n \theta)+k_{n} \cos (n \theta)\right.
$$

So,

$$
\begin{aligned}
& c_{n}=\frac{1}{a^{n} \pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \\
& k_{n}=\frac{1}{a^{n} \pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

Work for next class

- Read 10.5,10.7,10.8
- Homework 9 assigned but is not due! These are practice problems for the final.

