Math 23, Spring 2007

Lecture 20

Scott Pauls

Department of Mathematics
Dartmouth College

5/11/07

Material from last class

- First order Linear Systems of equations with constant coefficients

$$
\vec{x}^{\prime}=A \vec{x}
$$

- Cases:

1. Two distinct real eigenvalues,

$$
\vec{x}=\xi_{1} e^{r_{1} t}, \vec{x}=\xi_{2} e^{r_{2} t}
$$

$r_{1} \neq r_{2}$, both of same sign
Description: equilibrium solution is a node, either asymptotically stable or unstable.
$r_{1} \neq r_{2}$, opposite signs
Description: equilibrium solution is a saddle point
2. Two equal eigenvalues, $r_{1}=r_{2}$,

Case 1: two independent eigenvectors

$$
\vec{x}=\xi_{1} e^{r_{1} t}, \vec{x}=\xi_{2} e^{r_{1} t}
$$

Description: proper node

Further cases

Case 2: $r_{1}=r_{2}$, one eigenvector

$$
\vec{x}=\xi_{1} e^{r_{1} t}, \vec{x}=\xi_{1} t e^{r_{1} t}+\eta e^{r_{1} t}
$$

Description: improper node
Complex eigenvalues: $r_{1}=a+i b, r_{2}=a-i b$

$$
\vec{x}=\xi_{1} e^{a t} \cos (b t), \vec{x}=\xi_{2} e^{a t} \sin (b t)
$$

Description: Spiral points $(a \neq 0)$ and centers $(a=0)$

Nonlinear systems

None of our methods currently apply for nonlinear systems but, just as we did for autonomous systems, we can use linear methods to help understand the nonlinear case.

- Critical points: $\vec{x}^{\prime}=f(\vec{x})$. Find vectors so that $f(\vec{x})=0$.
- Assess stability:

1. a critical point is stable if any solution that starts near the critical point stays near the critical point
2. a critical point is asymptotically stable if it is stable and solutions tend to the critical point in the limit.
3. unstable points are thos that are not stable.

Example: the oscillating pendulum

Scott Pauls

Last class

Today's material
Linear analysis of nonlinear systems

$$
m L^{2} \frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin (\theta)
$$

Converted to a system of first order equations:

Find and classify critical points.

Example: the oscillating pendulum

$$
m L^{2} \frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin (\theta)
$$

Converted to a system of first order equations:

$$
\begin{gathered}
x^{\prime}=y \\
y^{\prime}=-\omega^{2} \sin (x)-\gamma y
\end{gathered}
$$

Find and classify critical points.

Finding trajectories

Example:

$$
\begin{gathered}
x^{\prime}=4-2 y \\
y^{\prime}=12-3 x^{2}
\end{gathered}
$$

Critical points: $x= \pm 2, y=2$ Rewrite:

Separate variables: $4 y-y^{2}+12 x+x^{3}=C$

Finding trajectories

Scott Paul

Example:

$$
\begin{gathered}
x^{\prime}=4-2 y \\
y^{\prime}=12-3 x^{2}
\end{gathered}
$$

Critical points: $x= \pm 2, y=2$ Rewrite:

Separate variables: $4 y-y^{2}+12 x+x^{3}=C$

Finding trajectories

Example:

$$
\begin{gathered}
x^{\prime}=4-2 y \\
y^{\prime}=12-3 x^{2}
\end{gathered}
$$

Critical points: $x= \pm 2, y=2$ Rewrite:

$$
\frac{d y}{d x}=\frac{12-3 x^{2}}{4-2 y}
$$

Separate variables: $4 y-y^{2}+12 x+x^{3}=C$

Finding trajectories

Example:

$$
\begin{gathered}
x^{\prime}=4-2 y \\
y^{\prime}=12-3 x^{2}
\end{gathered}
$$

Critical points: $x= \pm 2, y=2$ Rewrite:

$$
\frac{d y}{d x}=\frac{12-3 x^{2}}{4-2 y}
$$

Separate variables: $4 y-y^{2}+12 x+x^{3}=C$

Work for next class

- Read 10.1-10.2
- Homework 7 is due Monday 5/14/07

