Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Vext class

Math 23, Spring 2007 Lecture 20

Scott Pauls

Department of Mathematics Dartmouth College

5/11/07

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Material from last class

 First order Linear Systems of equations with constant coefficients

$$\vec{x}' = A\vec{x}$$

Cases:

1. Two distinct real eigenvalues,

$$\vec{x} = \xi_1 e^{r_1 t}, \vec{x} = \xi_2 e^{r_2 t}$$

 $r_1 \neq r_2$, both of same sign

Description: equilibrium solution is a node, either asymptotically stable or unstable.

 $r_1 \neq r_2$, opposite signs

Description: equilibrium solution is a saddle point

2. Two equal eigenvalues, $r_1 = r_2$, Case 1: two independent eigenvectors

$$\vec{x} = \xi_1 e^{r_1 t}, \vec{x} = \xi_2 e^{r_1 t}$$

Description: proper node

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Next class

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

Further cases

Case 2: $r_1 = r_2$, one eigenvector

$$\vec{x} = \xi_1 e^{r_1 t}, \vec{x} = \xi_1 t e^{r_1 t} + \eta e^{r_1 t}$$

Description: improper node

Complex eigenvalues: $r_1 = a + ib$, $r_2 = a - ib$

$$\vec{x} = \xi_1 e^{at} \cos(bt), \vec{x} = \xi_2 e^{at} \sin(bt)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Description: Spiral points ($a \neq 0$) and centers (a = 0)

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Nonlinear systems

None of our methods currently apply for nonlinear systems but, just as we did for autonomous systems, we can use linear methods to help understand the nonlinear case.

- Critical points: $\vec{x}' = f(\vec{x})$. Find vectors so that $f(\vec{x}) = 0$.
- Assess stability:
 - 1. a critical point is stable if any solution that starts near the critical point stays near the critical point
 - 2. a critical point is asymptotically stable if it is stable and solutions tend to the critical point in the limit.
 - 3. unstable points are thos that are not stable.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Example: the oscillating pendulum

$$mL^2\frac{d^2\theta}{dt^2} + \gamma\frac{d\theta}{dt} + \omega^2\sin(\theta)$$

Converted to a system of first order equations:

$$x' = y$$

$$y' = -\omega^2 \sin(x) - \gamma y$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Find and classify critical points.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Vext class

Example: the oscillating pendulum

$$mL^2\frac{d^2\theta}{dt^2} + \gamma\frac{d\theta}{dt} + \omega^2\sin(\theta)$$

Converted to a system of first order equations:

$$x' = y$$

 $y' = -\omega^2 \sin(x) - \gamma y$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Find and classify critical points.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Example:

$$x' = 4 - 2y$$
$$y' = 12 - 3x^2$$

Critical points: $x = \pm 2, y = 2$ Rewrite:

$$\frac{dy}{dx} = \frac{12 - 3x^2}{4 - 2y}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Separate variables: $4y - y^2 + 12x + x^3 = C$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Example:

$$x' = 4 - 2y$$
$$y' = 12 - 3x^2$$

Critical points: $x = \pm 2, y = 2$ Rewrite:

$$\frac{dy}{dx} = \frac{12 - 3x^2}{4 - 2y}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Separate variables: $4y - y^2 + 12x + x^3 = C$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Example:

$$x' = 4 - 2y$$
$$y' = 12 - 3x^2$$

Critical points: $x = \pm 2, y = 2$ Rewrite:

$$\frac{dy}{dx} = \frac{12 - 3x^2}{4 - 2y}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Separate variables: $4y - y^2 + 12x + x^3 = C$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Example:

$$x' = 4 - 2y$$
$$y' = 12 - 3x^2$$

Critical points: $x = \pm 2$, y = 2 Rewrite:

$$\frac{dy}{dx} = \frac{12 - 3x^2}{4 - 2y}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Separate variables: $4y - y^2 + 12x + x^3 = C$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Work for next class

Read 10.1-10.2

Homework 7 is due Monday 5/14/07

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Linear analysis of nonlinear systems

Next class

・ロト・日本・日本・日本・日本