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Material from last class
I First order Linear Systems of equations with

constant coefficients

~x ′ = A~x

I Cases:
1. Two distinct real eigenvalues,

~x = ξ1er1t , ~x = ξ2er2t

r1 6= r2, both of same sign
Description: equilibrium solution is a node, either
asymptotically stable or unstable.
r1 6= r2, opposite signs
Description: equilibrium solution is a saddle point

2. Two equal eigenvalues, r1 = r2,
Case 1: two independent eigenvectors

~x = ξ1er1t , ~x = ξ2er1t

Description: proper node
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Further cases

Case 2: r1 = r2, one eigenvector

~x = ξ1er1t , ~x = ξ1ter1t + ηer1t

Description: improper node

Complex eigenvalues: r1 = a + ib, r2 = a− ib

~x = ξ1eat cos(bt), ~x = ξ2eat sin(bt)

Description: Spiral points (a 6= 0) and centers (a = 0)
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Nonlinear systems

None of our methods currently apply for nonlinear
systems but, just as we did for autonomous systems, we
can use linear methods to help understand the nonlinear
case.

I Critical points: ~x ′ = f (~x). Find vectors so that
f (~x) = 0.

I Assess stability:
1. a critical point is stable if any solution that starts near

the critical point stays near the critical point
2. a critical point is asymptotically stable if it is stable

and solutions tend to the critical point in the limit.
3. unstable points are thos that are not stable.
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Example: the oscillating pendulum

mL2 d2θ

dt2 + γ
dθ

dt
+ ω2 sin(θ)

Converted to a system of first order equations:

x ′ = y

y ′ = −ω2 sin(x)− γy

Find and classify critical points.
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Finding trajectories

Example:
x ′ = 4− 2y

y ′ = 12− 3x2

Critical points: x = ±2, y = 2 Rewrite:

dy
dx

=
12− 3x2

4− 2y

Separate variables: 4y − y2 + 12x + x3 = C
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Work for next class

I Read 10.1-10.2
I Homework 7 is due Monday 5/14/07
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