Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Vext class

Math 23, Spring 2007 Lecture 19

Scott Pauls

Department of Mathematics Dartmouth College

5/9/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Material from last class

 First order Linear Systems of equations with constant coefficients

$$\vec{x}' = A\vec{x}$$

- Method of solution: guess x̄ = ξe^{rt} which relates solutions to the eigenvalues and eigenvectors of A
- Distinct real roots: exponential solutions
- Complex roots: exponentials/periodic solutions

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Repeated roots

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Vext class

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

$$\vec{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \vec{x}$$

Eigenvalue: $\lambda = 2$ Eigenvector: $\vec{\xi} = (1, -1)^t$

This gives a single solution $ec{x}(t)=\left(egin{array}{c}1\\-1\end{array}
ight)e^{2t}$

Repeated roots

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Vext class

$$\vec{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \vec{x}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Eigenvalue: $\lambda = 2$ Eigenvector: $\vec{\xi} = (1, -1)$

This gives a single solution $\vec{x}(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t}$.

Repeated roots

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Vext class

$$\vec{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \vec{x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Eigenvalue: $\lambda = 2$ Eigenvector: $\vec{\xi} = (1, -1)^t$

This gives a single solution $\vec{x}(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t}$.

What to do?

In the second order constant coefficient case, we used reduction of order and found solutions of the form $y = te^{rt}$. So, we will try to find additional solutions of the form

$$\vec{x} = \xi t e^{rt} + \eta e^{2t}$$

Plugging this into our equation yields

$$\xi e^{2t} + 2\xi t e^{2t} + 2\eta e^{2t} = A\xi t e^{2t} + A\eta e^{2t}$$

Or, cancelling the e^{2t} ,

$$(\xi + 2\eta) + 2t\xi = A\eta + A\xi t$$

Equating the coefficients yields

$$(A-2I)\xi=0$$

and

$$(A-2I)\eta = \xi$$

This first equation is satisfied if ξ is an eigenvector associated to $\lambda = 2$ so we are left with solving the second equation for n Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

What to do?

In the second order constant coefficient case, we used reduction of order and found solutions of the form $y = te^{rt}$. So, we will try to find additional solutions of the form

$$\vec{x} = \xi t e^{rt} + \eta e^{2t}$$

Plugging this into our equation yields

$$\xi e^{2t} + 2\xi t e^{2t} + 2\eta e^{2t} = A\xi t e^{2t} + A\eta e^{2t}$$

Or, cancelling the e^{2t} ,

$$(\xi + 2\eta) + 2t\xi = A\eta + A\xi t$$

Equating the coefficients yields

$$(A-2I)\xi=0$$

and

$$(\mathbf{A} - \mathbf{2I})\eta = \xi$$

This first equation is satisfied if ξ is an eigenvector associated to $\lambda = 2$ so we are left with solving the second equation for n Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Next class

What to do?

In the second order constant coefficient case, we used reduction of order and found solutions of the form $y = te^{rt}$. So, we will try to find additional solutions of the form

$$\vec{x} = \xi t e^{rt} + \eta e^{2t}$$

Plugging this into our equation yields

$$\xi e^{2t} + 2\xi t e^{2t} + 2\eta e^{2t} = A\xi t e^{2t} + A\eta e^{2t}$$

Or, cancelling the e^{2t} ,

$$(\xi + 2\eta) + 2t\xi = A\eta + A\xi t$$

Equating the coefficients yields

$$(A-2I)\xi=0$$

and

$$(A - 2I)\eta = \xi$$

This first equation is satisfied if ξ is an eigenvector associated to $\lambda = 2$ so we are left with solving the second equation for n

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Example (con't)

$$\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Solve for $\eta = (k, -1 - k)^t = (0, -1)^t + k(1, -1)^t$ So our two solutions are

$$\vec{x}_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t}$$

and

$$\vec{x}_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{2t}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Example (con't)

 $\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Solve for $\eta = (k, -1 - k)^t = (0, -1)^t + k(1, -1)^t$ So our two solutions are

$$\vec{x}_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t}$$

and

$$\vec{x}_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{2t}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Math 23, Spring 2007

Scott Pauls

_ast class

Today's material Repeated Roots

Example (con't)

 $\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Solve for $\eta = (k, -1 - k)^t = (0, -1)^t + k(1, -1)^t$ So our two solutions are

$$\vec{\mathbf{x}}_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t}$$

and

$$\vec{x}_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{2t}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Equilibrium solution

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Next class

Figure: An improper node

As $t \to \infty$, these solutions tend to infinity along a line of slope -1. Thus it is similar to a node. This case is called an **improper node**. Our example is asymptotically unstable but if the eigenvalue were negative, it would be asymptotically stable.

Example

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Next class

$$\vec{x}' = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \vec{x}$$

- 1. Find eigenvalues and eigenvectors (you should have one repeated eigenvalue)
- 2. Find a second solution using the method we learned today

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

3. Classify the equilibrium point at x = 0.

Work for next class

Read 9.1-9.3

Homework 7 is due Monday 5/14/07

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Repeated Roots

Next class