Math 23, Spring 2007
 Lecture 19

Scott Pauls

Department of Mathematics
Dartmouth College
5/9/07

Material from last class

- First order Linear Systems of equations with constant coefficients

$$
\vec{x}^{\prime}=A \vec{x}
$$

- Method of solution: guess $\vec{x}=\xi e^{r t}$ which relates solutions to the eigenvalues and eigenvectors of A
- Distinct real roots: exponential solutions
- Complex roots: exponentials/periodic solutions

Repeated roots

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \vec{x}
$$

Eigenvalue: $\lambda=2$

Eigenvector: $\vec{\xi}=(1,-1)^{t}$
This gives a single solution $\vec{x}(t)=\binom{1}{-1} e^{2 t}$.

Repeated roots

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \vec{x}
$$

Eigenvalue: $\lambda=2$

Repeated roots

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \vec{x}
$$

Eigenvalue: $\lambda=2$
Eigenvector: $\vec{\xi}=(1,-1)^{t}$
This gives a single solution $\vec{x}(t)=\binom{1}{-1} e^{2 t}$.

What to do?

In the second order constant coefficient case, we used reduction of order and found solutions of the form $y=t e^{r t}$. So, we will try to find additional solutions of the form

$$
\vec{x}=\xi t e^{r t}+\eta e^{2 t}
$$

Plugging this into our equation yields

Or, cancelling the $e^{2 t}$,

$$
(\xi+2 \eta)+2 t \xi=A \eta+A \xi t
$$

Equating the coefficients yields

$$
(A-2 I) \xi=0
$$

and
$(A-2 I) \eta=\xi$
This first equation is satisfied if ξ is an eigenvector

What to do?

In the second order constant coefficient case, we used reduction of order and found solutions of the form $y=t e^{r t}$. So, we will try to find additional solutions of the form

$$
\vec{x}=\xi t e^{r t}+\eta e^{2 t}
$$

Plugging this into our equation yields

$$
\xi e^{2 t}+2 \xi t e^{2 t}+2 \eta e^{2 t}=A \xi t e^{2 t}+A \eta e^{2 t}
$$

Or, cancelling the $e^{2 t}$,

$$
(\xi+2 \eta)+2 t \xi=A \eta+A \xi t
$$

Equating the coefficients yields

$$
(A-2 I) \xi=0
$$

and

$$
(A-2 I) \eta=\xi
$$

This first equation is satisfied if ξ is an eigenvector

What to do?

In the second order constant coefficient case, we used reduction of order and found solutions of the form $y=t e^{r t}$. So, we will try to find additional solutions of the form

$$
\vec{x}=\xi t e^{r t}+\eta e^{2 t}
$$

Plugging this into our equation yields

$$
\xi e^{2 t}+2 \xi t e^{2 t}+2 \eta e^{2 t}=A \xi t e^{2 t}+A \eta e^{2 t}
$$

Or, cancelling the $e^{2 t}$,

$$
(\xi+2 \eta)+2 t \xi=A \eta+A \xi t
$$

Equating the coefficients yields

$$
(A-2 I) \xi=0
$$

and

$$
(A-2 I) \eta=\xi
$$

This first equation is satisfied if ξ is an eigenvector associated to $\lambda=2$ so we are left with solving the second equation for n

Example (con't)

Math 23, Spring 2007

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{-1}
$$

Today's material
Repeated Roots

Solve for $\eta=(k,-1-k)^{t}=(0,-1)^{t}+k(1,-1)^{t}$ So our two solutions are

and

$$
\vec{x}_{1}(t)=\binom{1}{-1} t e^{2 t}+\binom{0}{-1} e^{2 t}
$$

Example (con't)

Math 23, Spring 2007

Scott Pauls

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{-1}
$$

Solve for $\eta=(k,-1-k)^{t}=(0,-1)^{t}+k(1,-1)^{t}$
So our two solutions are

and

Example (con't)

Math 23, Spring 2007

Scott Pauls

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{-1}
$$

Solve for $\eta=(k,-1-k)^{t}=(0,-1)^{t}+k(1,-1)^{t}$
So our two solutions are

$$
\vec{x}_{1}(t)=\binom{1}{-1} e^{2 t}
$$

and

$$
\vec{x}_{1}(t)=\binom{1}{-1} t e^{2 t}+\binom{0}{-1} e^{2 t}
$$

Equilibrium solution

Figure: An improper node
As $t \rightarrow \infty$, these solutions tend to infinity along a line of slope -1 . Thus it is similar to a node. This case is called an improper node. Our example is asymptotically unstable but if the eigenvalue were negative, it would be asvmototicallv stable.

Example

$$
\vec{x}^{\prime}=\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) \vec{x}
$$

1. Find eigenvalues and eigenvectors (you should have one repeated eigenvalue)
2. Find a second solution using the method we learned today
3. Classify the equilibrium point at $x=0$.

Work for next class

- Read 9.1-9.3
- Homework 7 is due Monday $5 / 14 / 07$

