Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Vext class

Math 23, Spring 2007 Lecture 18

Scott Pauls

Department of Mathematics Dartmouth College

5/7/07

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Material from last class

 First order Linear Systems of equations with constant coefficients

$$\vec{x}' = A\vec{x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Method of solution: guess x̄ = ξe^{rt} which relates solutions to the eigenvalues and eigenvectors of A Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

For

$$\vec{x} = A\vec{x}$$

we have any \vec{x} with $A\vec{x} = 0$ as an equilibrium point. In particular, $\vec{x} = 0$ is always such a point.

Classification: let λ_1, λ_2 be the eigenvalues of *A*

- 1. $\lambda_1 < 0 < \lambda_2$, real: zero is a **saddle point** and is an unstable equilibrium point.
- 2. λ_1, λ_2 real, nonzero and of the same sign: zero is a **node** is asymptotically stable, if $\lambda_i < 0$, and asympotically unstable otherwise

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Vext class

For

$$\vec{x} = A\vec{x}$$

we have any \vec{x} with $A\vec{x} = 0$ as an equilibrium point. In particular, $\vec{x} = 0$ is always such a point.

Classification: let λ_1, λ_2 be the eigenvalues of A

- 1. $\lambda_1 < 0 < \lambda_2$, real: zero is a **saddle point** and is an unstable equilibrium point.
- 2. λ_1, λ_2 real, nonzero and of the same sign: zero is a **node** is asymptotically stable, if $\lambda_i < 0$, and asympotically unstable otherwise

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Figure: A saddle point

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Figure: A node (stable)

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

As we have seen, we may have two complex conjugate eigenvalues: (2 - 2)

$$ec{x}'=egin{pmatrix} 3&-2\ 4&-1 \end{pmatrix}ec{x}$$

Eigenvalues:
$$1 \pm 2i$$

Solution:

$$\vec{x} = \xi e^{(1\pm 2i)t}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Vext class

As we have seen, we may have two complex conjugate eigenvalues:

$$\vec{x}' = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \vec{x}$$

Eigenvalues:
$$1 \pm 2i$$

Solution:

$$\vec{x} = \xi e^{(1 \pm 2i)t}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Vext class

Recall Euler's equation:

 $e^{it}=\cos(t)+i\sin(t)$

Suppose we have eigenvalues $\alpha \pm i \beta$ and eigenvectors $a \pm i b$. Then

$$\vec{x} = (a+ib)e^{(\alpha+i\beta)t}$$
$$= e^{\alpha t}((a\cos(\beta t) - b\sin(\beta t)) + i(a\sin(\beta t) + b\cos(\beta t)))$$

and

 $(a - ib)e^{(\alpha - i\beta)t}$ = $e^{\alpha t}((a\cos(\beta t) + b\sin(\beta t)) + i(-a\sin(\beta t) - b\cos(\beta t)))$ Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

・ロト・日本・日本・日本・日本・日本

Recall Euler's equation:

 $e^{it}=\cos(t)+i\sin(t)$

Suppose we have eigenvalues $\alpha \pm i\beta$ and eigenvectors $a \pm ib$. Then

$$\vec{x} = (a + ib)e^{(\alpha + i\beta)t}$$

= $e^{\alpha t}((a\cos(\beta t) - b\sin(\beta t)) + i(a\sin(\beta t) + b\cos(\beta t)))$

and

$$(a-ib)e^{(\alpha-i\beta)t} = e^{\alpha t}((a\cos(\beta t) + b\sin(\beta t)) + i(-a\sin(\beta t) - b\cos(\beta t)))$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Taking an appropriate linear combination yields two real functions

$$u(t) = e^{\alpha t} ((a\cos(\beta t) - b\sin(\beta t)))$$

$$v(t) = e^{\alpha t}((a\sin(\beta t) + b\cos(\beta t)))$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Caution: remember that *a* and *b* are vectors.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Example

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

$$ec{x}' = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} ec{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classification of equilibrium points

- λ = a ± ib: zero is a spiral point and is asympototically stable if a < 0 and unstable otherwise.
- 2. $\lambda a \pm ib$, a = 0: zero si called a **center** and is stable but not asymptotically stable.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Figure: A spiral point: asympt. stable

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

・

Figure: A sprial point:asympt. unstable

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

・ロト・日本・モート ヨー うくぐ

Figure: A center

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Example

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

$$ec{x}' = egin{pmatrix} 1 & 0 & 0 \ 2 & 1 & -2 \ 3 & 2 & 1 \end{pmatrix} ec{x}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Work for next class

Read 7.7

Homework 7 is due Monday 5/14/07

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Solution for linear first order systems

Next class

・ロト・日本・日本・日本・日本