Math 23, Spring 2007

 Lecture 16
Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College

5/2/07

Outline

Last class

Today's material

Existence and Uniqueness Linear Algebra

Next class

Material from last class

- First order systems of equations
- Predator-Prey model
- Translating higher order ODE into first order systems

Existence and Uniqueness

Theorem

Given a system of first order equations

$$
x_{1}^{\prime}=F_{1}(t, \vec{x}), x_{2}^{\prime}=F_{2}(t, \vec{x}), \ldots, x_{k}^{\prime}=F_{k}(t, \vec{x})
$$

If F_{i} and $\frac{d F_{i}}{d x_{j}}$ are continuous on a region R defined by $\alpha<t<\beta, \alpha_{i}<x_{i}<\beta_{i}$ for all i, j and $\left(t_{0}, x_{1}^{0}, \ldots, x_{k}^{0}\right)$ is a point in R, then there is an interval $t_{0}-h<t<t_{0}+h$ in which there is a unique solution to the system above subject to the initial conditions

$$
x_{1}\left(t_{0}\right)=x_{1}^{0}, \ldots, x_{k}\left(t_{0}\right)=x_{k}^{0}
$$

Eigenvalues and Eigenvectors

Let A be a $k \times k$ matrix.
Definition
An eigenvalue of A is a number λ with the property that there exists a vector v so that

$$
A v=\lambda v
$$

Such a vector v is called an eigenvector associated to λ

Finding eigenvalues

Math 23, Spring 2007

$$
A v=\lambda v \Longleftrightarrow(A-\lambda I) v=0
$$

Theorem

The equation $M v=0$ has a nonzero solution if and only if det $M=0$.

To find eigenvalues, solve $\operatorname{det}(A-\lambda I)=0$ for λ.

Finding eigenvalues

$$
A v=\lambda v \Longleftrightarrow(A-\lambda I) v=0
$$

Theorem
The equation Mv = 0 has a nonzero solution if and only if $\operatorname{det} M=0$.
To find eigenvalues, solve $\operatorname{det}(A-\lambda I)=0$ for λ.

Finding eigenvalues

$$
A v=\lambda v \Longleftrightarrow(A-\lambda /) v=0
$$

Theorem
The equation Mv = 0 has a nonzero solution if and only if $\operatorname{det} M=0$.
To find eigenvalues, solve $\operatorname{det}(A-\lambda I)=0$ for λ.

Example

Find the eigenvalues for

$$
\left(\begin{array}{ccc}
3 & 2 & 2 \\
1 & 4 & 1 \\
-2 & -4 & -1
\end{array}\right)
$$

Finding eigenvectors

To find the associated eigenvector for a given λ solve the system

$$
(A-\lambda I)\binom{x_{1}}{x_{2}}=0
$$

for x_{1}, x_{2}

Examples

Find the eigenvalues and eigenvectors for

$$
\left(\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right)
$$

Work for next class

- Read 7.5
- Homework 6 is due Monday 5/7/07

