Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Next class

Math 23, Spring 2007 Lecture 16

Scott Pauls 1

¹Department of Mathematics Dartmouth College

5/2/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Outline

Last class

Today's material Existence and Uniqueness Linear Algebra

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Next class

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Material from last class

- First order systems of equations
- Predator-Prey model
- Translating higher order ODE into first order systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Existence and Uniqueness

Theorem

Given a system of first order equations

$$x'_1 = F_1(t, \vec{x}), \ x'_2 = F_2(t, \vec{x}), \dots, x'_k = F_k(t, \vec{x})$$

If F_i and $\frac{dF_i}{dx_j}$ are continuous on a region R defined by $\alpha < t < \beta, \alpha_i < x_i < \beta_i$ for all i, j and $(t_0, x_1^0, \dots, x_k^0)$ is a point in R, then there is an interval $t_0 - h < t < t_0 + h$ in which there is a unique solution to the system above subject to the initial conditions

$$x_1(t_0) = x_1^0, \ldots, x_k(t_0) = x_k^0$$

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Eigenvalues and Eigenvectors

Let *A* be a $k \times k$ matrix.

Definition

An eigenvalue of A is a number λ with the property that there exists a vector v so that

$$Av = \lambda v$$

Such a vector v is called an eigenvector associated to λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Finding eigenvalues

$$Av = \lambda v \iff (A - \lambda I)v = 0$$

Theorem

The equation Mv = 0 has a nonzero solution if and only if det M = 0.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

To find eigenvalues, solve $det(A - \lambda I) = 0$ for λ .

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Finding eigenvalues

$$A\mathbf{v} = \lambda\mathbf{v} \iff (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$$

Theorem

The equation Mv = 0 has a nonzero solution if and only if det M = 0.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

To find eigenvalues, solve $det(A - \lambda I) = 0$ for λ .

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Finding eigenvalues

$$Av = \lambda v \iff (A - \lambda I)v = 0$$

Theorem

The equation Mv = 0 has a nonzero solution if and only if det M = 0.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

To find eigenvalues, solve $det(A - \lambda I) = 0$ for λ .

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Example

Find the eigenvalues for

$$\begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Finding eigenvectors

To find the associated eigenvector for a given λ solve the system

$$(\boldsymbol{A} - \lambda \boldsymbol{I}) \begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{pmatrix} = \boldsymbol{0}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for x_1, x_2

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Examples

Find the eigenvalues and eigenvectors for

$$\begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Work for next class

Read 7.5

Homework 6 is due Monday 5/7/07

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Existence and Uniqueness Linear Algebra

Next class

シック・ 川 ・ 川 ・ 川 ・ 一日・