Math 23, Spring 2007

 Lecture 15
Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College

4/30/07

Outline

Midterm results

Last class

Last class
Today's material
Series solutions around ordinary points
Series solutions around
ordinary points
Next class

Today's material
Series solutions around ordinary points
Linear systems of equations
Linear systems of equations

Next class

Midterm results

Figure: Histogram from total score

- In class: mean $=31$, std $=8$
- Take home: mean $=35$, std=9
- Total: mean $=66$, std $=15$

Material from last class

- Series solutions for second order linear ODE

$$
y=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

- Further examples

Example from last class

Scott Pauls

Midterm results

Last class

Today's material
Series solutions around
ordinary points
Series solutions around
ordinary points
Legendre's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

Example from midterm

In the second problem on the take home midterm, you were asked to transform a second order equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Last class

Today's material
Series solutions around
ordinary points
Series solutions around
ordinary points
into two (coupled) first order equations:

$$
\begin{aligned}
& L_{1}[y(t)]=u(t) \\
& L_{2}[u(t)]=g(t)
\end{aligned}
$$

Point: one can then solve two first order equations (often simple) rather than a single, potentially harder higher order equation.

Example from midterm

In the second problem on the take home midterm, you were asked to transform a second order equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Last class

Today's material
Series solutions around
ordinary points
Series solutions around
ordinary points
Next class
into two (coupled) first order equations:

$$
\begin{aligned}
& L_{1}[y(t)]=u(t) \\
& L_{2}[u(t)]=g(t)
\end{aligned}
$$

Point: one can then solve two first order equations (often simple) rather than a single, potentially harder higher order equation.

Examples of systems

Predator/Prey

The Lotka-Volterra model:

$$
\begin{aligned}
& \frac{d H}{d t}=a_{1} H-b_{1} H P \\
& \frac{d P}{d t}=-a_{2} P+b_{2} H P
\end{aligned}
$$

where H, P are the two populations, a_{1} is the birth rate of H, a_{2} is the death rate of P and b_{1}, b_{2} are the coefficients of the interaction between predator and prey HP.

Transformation of second order systems

Scott Pauls

Midterm results
Last class
Today's material
Series solutions around
ordinary points
Series solutions around

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Transformation of second order systems

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Let $u=y^{\prime}, v=y$. Then this system becomes

$$
\begin{aligned}
& v^{\prime}=u \\
& u^{\prime}=g(t)-p(t) u-q(t) v
\end{aligned}
$$

Using matlab

Consider a difficult second order system:
Today's material
Series solutions around ordinary points
Series solutions around

$$
y^{\prime \prime}+\sin (y)=0
$$

We can using ode 45 to solve this system. See linsys.m on our website.

Using matlab

Math 23, Spring

Consider a difficult second order system:

$$
y^{\prime \prime}+\sin (y)=0
$$

Convert it to a first order system:

$$
u=v^{\prime}, u^{\prime}=-\sin (v)
$$

We can using ode 45 to solve this system. See linsys.m on our website.

Using matlab

Consider a difficult second order system:

$$
y^{\prime \prime}+\sin (y)=0
$$

Convert it to a first order system:

$$
u=v^{\prime}, u^{\prime}=-\sin (v)
$$

We can using ode 45 to solve this system. See linsys.m on our website.

Work for next class

- Read: 7.1-5.4
- Homework 5 is due wednesday $5 / 1$, Homework 6 is posted today and due Monday 5/7/07

