Math 23, Spring 2007

Scott Pauls

In class midterm results

_ast class

Today's material Series solutions around ordinary points

Next class

Math 23, Spring 2007 Lecture 13

Scott Pauls 1

¹Department of Mathematics Dartmouth College

4/25/07

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Outline

In class midterm results

Last class

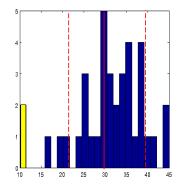
Today's material Series solutions around ordinary points

Next class

Math 23, Spring 2007

Scott Pauls

In class midterm results


Last class

Today's material Series solutions around ordinary points

Next class

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Midterm results

Math 23, Spring 2007

Scott Pauls

In class midterm results

_ast class

oday's material Series solutions around ordinary points

Next class

Figure: mean = 31, standard deviation = 8

Material from last class

Series solutions for second order linear ODE

$$y=\sum_{n=0}^{\infty}a_n(t-t_0)^n$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

In class midterm results

Last class

Today's material Series solutions around ordinary points

Example from last class

Math 23, Spring 2007

Scott Pauls

In class midterm results

_ast class

Today's material Series solutions around ordinary points

Next class

y''+ty=0

・ロト・四ト・モー・モー もくの

Example from last class

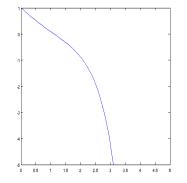
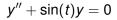


Figure: A plot of the approximate solution

Math 23, Spring 2007


Scott Pauls

In class midterm results

Last class

Today's material Series solutions around ordinary points

A variation

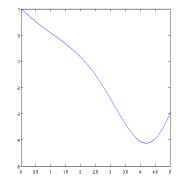


Figure: A plot of the approximate solution

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Math 23, Spring 2007

Scott Pauls

In class midterm results

_ast class

Today's material Series solutions around ordinary points

Theorem

Theorem Consider the equation

$$P(x)y'' + Q(x)y' + R(x)y = 0$$

If x_0 is an ordinary point, i.e. p = Q/P and q = R/P are analytic at x_0 then the general solution of the ODE is

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 y_1(x) + a_1 y_2(x)$$

where a_0 , a_1 are arbitrary and y_1 and y_2 are linearly independent series solutions that are analytic at x_0 . Moreover the radii of convergence of the y_i are at least as large as the minimum of the radii of convergence of p and q. Math 23, Spring 2007

Scott Pauls

In class midterm results

Last class

Today's material Series solutions around ordinary points

Example

Legendre's equation:

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0$$

Math 23, Spring 2007

Scott Pauls

In class midterm results

_ast class

Today's material Series solutions around ordinary points

Next class

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Work for next class

- Read: 5.1-5.3
- Homework 5 is due wednesday 5/1

Math 23, Spring 2007

Scott Pauls

In class midterm results

_ast class

Today's material Series solutions around ordinary points

Next class

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで