Math 23, Spring 2007

 Lecture 13
Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College

4/25/07

Outline

In class midterm results

Last class

Today's material
Series solutions around ordinary points

Next class

Midterm results

Math 23, Spring 2007

Scott Pauls

In class midterm results

Last class
Today's material
Series solutions around
ordinary points
Next class

Figure: mean $=31$, standard deviation $=8$

Material from last class

- Series solutions for second order linear ODE

$$
y=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

Example from last class

$$
y^{\prime \prime}+t y=0
$$

Example from last class

Figure: A plot of the approximate solution

A variation

$$
y^{\prime \prime}+\sin (t) y=0
$$

Today's material

Figure: A plot of the approximate solution

Theorem

Theorem
Consider the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

If x_{0} is an ordinary point, i.e. $p=Q / P$ and $q=R / P$ are analytic at x_{0} then the general solution of the ODE is

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0}, a_{1} are arbitrary and y_{1} and y_{2} are linearly independent series solutions that are analytic at x_{0}. Moreover the radii of convergence of the y_{i} are at least as large as the minimum of the radii of convergence of p and q.

Example

Scott Pauls

In class midterm results

Legendre's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

Work for next class

- Read: 5.1-5.3
- Homework 5 is due wednesday $5 / 1$

