Math 23, Spring 2007

 Lecture 13
Scott Pauls ${ }^{1}$

${ }^{1}$ Department of Mathematics
Dartmouth College

4/25/07

Outline

Last class

Today's material
Resonance
General second order linear equations Series Solutions

Next class

Material from last class

- Spring-mass systems with forcing

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos (\omega t)
$$

- No damping: amplitude modulation
- Damping: resonance when ω_{0} is close to ω

Pendulum

The pendulum is modeled by the ODE

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin (\theta)=0
$$

which we can reduce to a linear version (for small θ):

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0
$$

Solution: $r= \pm i \sqrt{g / L}= \pm i \omega$

$$
y_{c}(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

If we add forcing, $F_{0} \cos \left(\omega_{0} t\right)$, we expect the largest effect when ω_{0} is close to ω.

Pendulum

The pendulum is modeled by the ODE

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin (\theta)=0
$$

which we can reduce to a linear version (for small θ):

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0
$$

Solution: $r= \pm i \sqrt{g / L}= \pm i \omega$

$$
y_{c}(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

If we add forcing, $F_{0} \cos \left(\omega_{0} t\right)$, we expect the largest effect when ω_{0} is close to ω.

Second order linear equations

So far, we have focused on the constant coefficient second order equations:

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

but we do not have any methods for more general linear equations:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

or even more general equations

$$
y^{\prime \prime}=f\left(y, y^{\prime}, t\right)
$$

Example: for the pendulum equation, we approximated the equation by a constant coefficient linear version by replacing $\sin (\theta)$ with θ.

Two basic ideas:

- Approximate general equations by linear ones
- Generate approximate solutions to linear equations which converge to exact solutions.

Second order linear equations

So far, we have focused on the constant coefficient second order equations:

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

but we do not have any methods for more general linear equations:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

or even more general equations

$$
y^{\prime \prime}=f\left(y, y^{\prime}, t\right)
$$

Example: for the pendulum equation, we approximated the equation by a constant coefficient linear version by replacing $\sin (\theta)$ with θ.

Two basic ideas:

- Approximate general equations by linear ones
- Generate approximate solutions to linear equations which converge to exact solutionss.

Second order linear equations

So far, we have focused on the constant coefficient second order equations:

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

but we do not have any methods for more general linear equations:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

or even more general equations

$$
y^{\prime \prime}=f\left(y, y^{\prime}, t\right)
$$

Example: for the pendulum equation, we approximated the equation by a constant coefficient linear version by replacing $\sin (\theta)$ with θ.
Two basic ideas:

- Approximate general equations by linear ones
- Generate approximate solutions to linear equations which converge to exact solutions.

Power series solutions

For a linear equation:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

finding an exact solution is often too difficult. To create a
general method of solution, we represent the solution as a power series

$$
y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

Our goal is to

- Find the a_{n}
- Find the radius of convergence of the resulting power series.

Brief review of power series

A function $y(t)$ is said to be represented by a power series on the interval / if

$$
y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

for some coefficients $\left\{a_{n}\right\}$ and all $t \in I$. Finding power series:

Taylor's formula

- Build series from known series via substitution, integration or differentiation

Radius of convergence:

Brief review of power series

A function $y(t)$ is said to be represented by a power series on the interval / if

$$
y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

for some coefficients $\left\{a_{n}\right\}$ and all $t \in I$.
Finding power series:

- Taylor's formula

$$
y(t)=y\left(t_{0}\right)+\sum_{n=1}^{\infty} \frac{y^{(n)}\left(t_{0}\right)}{n!}\left(t-t_{0}\right)^{n}
$$

- Build series from known series via substitution, integration or differentiation
Radius of convergence:
- Ratio test

Brief review of power series

A function $y(t)$ is said to be represented by a power series on the interval / if

$$
y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

for some coefficients $\left\{a_{n}\right\}$ and all $t \in I$.
Finding power series:

- Taylor's formula

$$
y(t)=y\left(t_{0}\right)+\sum_{n=1}^{\infty} \frac{y^{(n)}\left(t_{0}\right)}{n!}\left(t-t_{0}\right)^{n}
$$

- Build series from known series via substitution, integration or differentiation
Radius of convergence:
- Ratio test

Finding power series solutions

The basic idea is simple,

1. Substitute $y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}$ into the ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

2. Replace p, q, g with power series representations expanded about t_{0}
3. Expand and simplify
4. Solve for the a_{n}

Examples

Math 23, Spring 2007

Scott Pauls

Last class
Today's material
Resonance
General second order linear equations
Series Solutions
Next class

- $y^{\prime \prime}+y=0$
- $y^{\prime \prime}+t y=0$

Work for next class

- Read: 5.1-5.3
- Homework 5 is due wednesday 5/1

