Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linear equations Series Solutions

Vext class

Math 23, Spring 2007 Lecture 13

Scott Pauls 1

¹Department of Mathematics Dartmouth College

4/25/07

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Outline

Last class

Today's material

Resonance General second order linear equations Series Solutions

Next class

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linea equations Series Solutions

lext class

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Material from last class

Spring-mass systems with forcing

$$mu'' + \gamma u' + ku = F_0 \cos(\omega t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- No damping: amplitude modulation
- Damping: resonance when ω_0 is close to ω

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order lineal equations Series Solutions

Vext class

Pendulum

The pendulum is modeled by the ODE

$$rac{d^2 heta}{dt^2}+rac{g}{L}\sin(heta)=0$$

which we can reduce to a linear version (for small θ):

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$$

Solution: $r = \pm i \sqrt{g/L} = \pm i \omega$

 $y_c(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$

If we add forcing, $F_0 \cos(\omega_0 t)$, we expect the largest effect when ω_0 is close to ω .

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order lineal equations Series Solutions

Next class

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Pendulum

The pendulum is modeled by the ODE

$$rac{d^2 heta}{dt^2}+rac{g}{L}\sin(heta)=0$$

which we can reduce to a linear version (for small θ):

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$$

Solution: $r = \pm i \sqrt{g/L} = \pm i \omega$

$$y_c(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$

If we add forcing, $F_0 \cos(\omega_0 t)$, we expect the largest effect when ω_0 is close to ω .

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linea equations Series Solutions

Vext class

Second order linear equations

So far, we have focused on the constant coefficient second order equations:

$$ay'' + by' + cy = g(t)$$

but we do not have any methods for more general linear equations:

$$y'' + p(t)y' + q(t)y = g(t)$$

or even more general equations

$$y''=f(y,y',t)$$

Example: for the pendulum equation, we *approximated* the equation by a constant coefficient linear version by replacing $sin(\theta)$ with θ .

Two basic ideas:

- Approximate general equations by linear ones
- Generate approximate solutions to linear equations which converge to exact solutions.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linear equations Series Solutions

Second order linear equations

So far, we have focused on the constant coefficient second order equations:

$$ay'' + by' + cy = g(t)$$

but we do not have any methods for more general linear equations:

$$y'' + p(t)y' + q(t)y = g(t)$$

or even more general equations

$$\mathbf{y}''=f(\mathbf{y},\mathbf{y}',t)$$

Example: for the pendulum equation, we *approximated* the equation by a constant coefficient linear version by replacing $sin(\theta)$ with θ .

Two basic ideas:

- Approximate general equations by linear ones
- Generate approximate solutions to linear equations which converge to exact solutions.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linear equations Series Solutions

Second order linear equations

So far, we have focused on the constant coefficient second order equations:

$$ay'' + by' + cy = g(t)$$

but we do not have any methods for more general linear equations:

$$y'' + p(t)y' + q(t)y = g(t)$$

or even more general equations

$$\mathbf{y}''=f(\mathbf{y},\mathbf{y}',t)$$

Example: for the pendulum equation, we *approximated* the equation by a constant coefficient linear version by replacing $sin(\theta)$ with θ .

Two basic ideas:

- Approximate general equations by linear ones
- Generate approximate solutions to linear equations which converge to exact solutions.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linear equations Series Solutions

Power series solutions

For a linear equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

finding an exact solution is often too difficult. To create a general method of solution, we represent the solution as a power series

$$y(t) = \sum_{n=0}^{\infty} a_n (t-t_0)^n$$

Our goal is to

- Find the a_n
- Find the radius of convergence of the resulting power series.

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linear equations Series Solutions

lext class

Brief review of power series

A function y(t) is said to be represented by a power series on the interval *I* if

$$y(t) = \sum_{n=0}^{\infty} a_n (t-t_0)^n$$

for some coefficients $\{a_n\}$ and all $t \in I$.

► Taylor's formula

$$y(t) = y(t_0) + \sum_{n=1}^{\infty} \frac{y^{(n)}(t_0)}{n!} (t - t_0)^n$$

 Build series from known series via substitution, integration or differentiation

Radius of convergence:

Ratio test

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linea equations Series Solutions

Next class

・ロト・西・・田・・田・・日・

Brief review of power series

A function y(t) is said to be represented by a power series on the interval *I* if

$$y(t) = \sum_{n=0}^{\infty} a_n (t-t_0)^n$$

for some coefficients $\{a_n\}$ and all $t \in I$. Finding power series:

Taylor's formula

$$y(t) = y(t_0) + \sum_{n=1}^{\infty} \frac{y^{(n)}(t_0)}{n!} (t - t_0)^n$$

 Build series from known series via substitution, integration or differentiation

Radius of convergence:

Ratio test

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order lineal equations Series Solutions

Next class

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Brief review of power series

A function y(t) is said to be represented by a power series on the interval *I* if

$$y(t) = \sum_{n=0}^{\infty} a_n (t-t_0)^n$$

for some coefficients $\{a_n\}$ and all $t \in I$. Finding power series:

Taylor's formula

$$y(t) = y(t_0) + \sum_{n=1}^{\infty} \frac{y^{(n)}(t_0)}{n!} (t - t_0)^n$$

 Build series from known series via substitution, integration or differentiation

Radius of convergence:

Ratio test

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linea equations Series Solutions

Next class

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Finding power series solutions

The basic idea is simple,

1. Substitute $y(t) = \sum_{n=0}^{\infty} a_n (t - t_0)^n$ into the ODE

y'' + p(t)y' + q(t)y = g(t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- 2. Replace *p*, *q*, *g* with power series representations expanded about *t*₀
- 3. Expand and simplify
- 4. Solve for the *a_n*

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linea equations Series Solutions

Examples

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linea equations Series Solutions

Vext class

Work for next class

- Read: 5.1-5.3
- Homework 5 is due wednesday 5/1

Math 23, Spring 2007

Scott Pauls

Last class

Today's material Resonance General second order linear equations Series Solutions

Next class

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●