Covered today: Basic definitions associated with sequences and series. Definition of convergence, divergence, conditional convergence. Geometric series, p-series. Tests for convergence/divergence.

For next time:

1.
Let $a_n = \frac{e^n-e^{-n}}{e^n+e^{-n}}$. Compute $\lim a_n$, and prove your answer using the definition of convergence.

2.
Prove, using the definition of divergence, that if $a_n =
\frac{n^2-4}{n+5}$, then an diverges to $\infty$.

3.
Using the defintion of convergence, prove the following: Let an and bn be sequences and define cn = an+bn. If $\lim a_n =
L_1$ and $\lim b_n = L_2$, then $\lim c_n = L_1 + L_2$.

4.
Assume that -1 < r < 1, and consider the geometric series $\sum_{n=0}^{\infty} ar^n$. Write down the nth partial sum Sn. Prove that $S_n = \frac{a(1-r^{n+1})}{1-r}$. Prove that the series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$.

5.
Compute $\sum_{n=0}^{\infty} \frac{1}{e^n}$

6.
Compute $\sum_{n=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$

7.
Compute $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$

8.
Determine whether each of the following series converges or diverges

9.





Math 23 Fall 1999
1999-11-02