
MATH 23: DIFFERENTIAL EQUATIONS
WINTER 2017

PRACTICE PROBLEMS FOR FINAL EXAM

Problem 1. TRUE or FALSE?

• (a) erx is a solution of the equation : FALSE

x2y′′ + xαy′ + βy = 0

• (b) If A is an n × n matrix and x′,x are n-vectors, then x′ = Ax is a homogeneous
system of first order differential equations. TRUE

• (c) If f(x) is continuous on a domain D, then there is a unique Fourier series that
converges to f on D. FALSE

• (d) The function sin(x− π
4
) is odd. FALSE

• (e) The function e|x| cos(x3) is even. TRUE

Problem 2. For each of the following systems of equations, find the eigenvalues and corre-
sponding eigenvectors, find the general solution, and sketch a phase portrait:

(a) x′ =

(
0 1
−2 −3

)
x

(b) x′ =

(
5 0
2 −1

)
x

(c) x′ =

(
−1 −4
2 3

)
x

(d) x′ =

(
4 −1
1 6

)
x

Solution. (a) First we compute the eigenvalues:

∣∣∣∣−λ 1
−2 −3− λ

∣∣∣∣ = 0, so λ1 = −2, λ2 = −1. To

get an eigenvector for −2, we solve

(
2 1
−2 −1

)(
v1
v2

)
= 0. So

(
v1
v2

)
= c

(
−1
2

)
. So we can

use

(
−1
2

)
as an eigenvector for −2. Similarly,

(
−1
1

)
is an eigenvector for −1. The general

solution is (
x1
x2

)
= c1

(
−1
2

)
e−2t + c2

(
−1
1

)
e−t.

Plotting the trajectories on the x1x2-plane, with arrows indicating the direction as t increases,
we get the phase portrait
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Alternatively, one can plot a direction field using the given system in matrix form, without

solving first: at a point x the direction vector should be

(
0 1
−2 −3

)
x. The trajectories of

the solutions are just the flow lines of the direction field.

(b) Similar to (a), one gets eigenvalues 5 and −1, with corresponding eigenvectors

(
3
1

)
and

(
0
1

)
. So the general solution is

(
x1
x2

)
= c1

(
3
1

)
e5t + c2

(
0
1

)
e−t.

The phase portrait looks like
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(c) The eigenvalues are 1 + 2i and 1− 2i, with corresponding eigenvectors

(
−1 + i

1

)
and(

−1− i
1

)
. So the general solution is

(
x1
x2

)
= c1

(
− cos 2t− sin 2t

cos 2t

)
et + c2

(
cos 2t− sin 2t

sin 2t

)
et.

The phase portrait looks like

(d) The only eigenvalue is 5, with corresponding eigenvector

(
−1
1

)
(also a repeated eigen-

vector). To find the generalized eigenvector, we solve

(
−1 −1
1 1

)
η =

(
−1
1

)

and get

η =

(
0
1

)
+ k

(
−1
1

)
.

So the general solution is

(
x1
x2

)
= c1e

5t

(
−1
1

)
+ c2e

5t

[(
−1
1

)
t+

(
0
1

)]
.

The phase portrait looks like
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Problem 3. Find a series solution with center x = 0 to the differential equation

y′′ + xy′ − 3y = 0.

What is the radius of convergence?

Solution. Let y =
∑∞

n=0 anx
n. Then y′ =

∑∞
n=1 nanx

n−1, and y′′ =
∑∞

n=2 n(n − 1)anx
n−2 =∑∞

n=0(n+ 2)(n+ 1)an+2x
n. Plugging these series into the equation, we get

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=1

nanx
n −

∞∑
n=0

3anx
n = 0

In this new equation, the coefficients for each power of x on the left hand side must add up
to zero. So for n = 0 we get 2a2 = 3a0, i.e. a2 = 3

2
a0. For n > 0 we get

(n+ 2)(n+ 1)an+2 + nan − 3an = 0,

so

an+2 =
(3− n)an

(n+ 2)(n+ 1)

In particular, when n = 3 we get a5 = 0 from this recursion, so a2n+1 = 0 for all n ≥ 2, and
when n = 1 we get a3 = a1/3. Observe in fact that the first series equation gives a1 = 0
anyway, so an = 0 for all odd n. For even indices, we repeat the recursion down to a0 to get
that for n ≥ 1,

a2n =

(
n−1∏
k=0

3− 2k

(2k + 2)(2k + 1)

)
a0.

So the general solution is

y = a0

(
1 +

∞∑
n=1

(
n−1∏
k=0

3− 2k

(2k + 2)(2k + 1)

)
x2n

)
.

Since the given differential equation is of form y′′ + p(x)y′ + q(x)y = 0 and p and q are
polynomials, the series solutions have radius ∞.
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Problem 4. Given a solution y1(x) = ex for the following ODE, find a second independent
solution of:

(x− 1)y′′ − xy′ + y = 0, x > 1

Solution. Use reduction of order. Suppose y2(x) = u(x)ex. Calculate y′(x) and y′′(x) and
plug into the equation. We end up with

u′′ +
(x− 2)

(x− 1)
u′ = 0

Let v = u′; then v′ = u′′. Hence we get a first order ode:

v′ +
(x− 2)

(x− 1)
v = 0

Which can be solved by multiplying with an integrating factor e
∫ (x−2)

(x−1)
dx = ex−ln |x−1| = ex

x−1 ;

or by separation of variables giving v(x) = c(x−1)e−x. But v = u′.Therefore u =
∫
v(x)dx =

c(−xe−x). Thus y2 = ex(cxe−x) = cx, c arbitrary.

Problem 5. Find a lower bound on the radius of convergence for series solutions about
x = 0 of each of the differential equations:
(a) (x2 − x− 2)y′′ + (x+ 3)y′ − 7y = 0
(b) (x2 − 4x+ 5)y′′ + y′ + x2y = 0

Solution. Write the equation as y′′ + p(x)y′ + q(x)y = 0

(a) p(x) = (x+3)
(x2−x−2) and q(x) = −7

(x2−x−2) . The zeros of the denominator are x = −1, x = 2.

Lower bound on radius of converegence for solution is given by the minimum distance from
the point about which the series is formed, x = 0, to the singular points of p(x), q(x).
Therefore lower bound on radius of convergence is 1.

(b)By the same reason as above (we get zeros 2± i) the lower bound on radius of conver-
gence is

√
5.

Problem 6. Use separation of variables to replace the given partial differential equation
with a pair of ordinary differential equations:
(a) xfxy + f = fyy
(b) 3fxx − xfy = 0

Solution. (a) Assume f(x, y) = X(x)Y (y). Then fx = X ′(x)Y (y), fxy = X ′Y ′ and fyy =
XY ′′. Plugging these into the given PDE, we get

xX ′Y ′ = XY ′′ −XY
Separating for the variables x, y, we get

x
X ′

X
=
Y ′′ − Y
Y ′

For the above to be equal for all x and all y they must be equal to a constant value λ. This
gives us two ODEs:

xX ′ − λX = 0
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and

Y ′′ − λY ′ − Y = 0

(b) Again assume f(x, y) = X(x)Y (y). Calculate fxx, fy and plug into the given equation
to get

X ′′

xX
=
Y ′

3Y
= λ

Separating into 2 equations we get

X ′′ − λxX = 0

and

Y ′ − λ3Y = 0

Problem 7. Find two different Fourier series representation of the function f(x) = 2x,
0 ≤ x ≤ 1. Comment on the convergence of each series.

Solution. One solution is to extend f to an even function, by defining the extension to be
−2x on [−1, 0], and have period 2. The corresponding Fourier series is a cosine series and
has coefficients

a0 = 2

∫ 1

0

2xdx = 2

and for n > 0, using integration by parts,

an = 2

∫ 1

0

2x cosnπxdx = 4

[
x

nπ
sinnπx+

1

n2π2
cosnπx

]1
0

=
4

n2π2
(cosnπ − 1)

=

{
0 if n is even
− 8
n2π2 if n is odd

i.e. the series is

1− 8

π2

∞∑
n=1

cos(2n− 1)πx

(2n− 1)2
.

Since the extension is continuous everywhere, the series converges to it (and in particular to
f) everywhere.

One can also extend to a function of period 2 that is odd near zero, by declaring the
extension to be 2x on (−1, 0). The corresponding Fourier series is a sine series and has
coefficients

bn = 2

∫ 1

0

2x sinnπxdx = 4

[
− x

nπ
cosnπx+

1

n2π2
sinnπx

]1
0

=
−4

nπ
(−1)n,

i.e. the series is

− 8

π

∞∑
n=1

(−1)n sinnπx

n
.
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At x = 2k+1, this series converges to the average of the left and right limits of the extension,
i.e. to zero. On the other hand, the extension is always 2 at 2k + 1. So the series converges
to the extension for all x 6= 2k + 1, and in particular converges to f on [0, 1).

Problem 8. Solve the equation below by making a change of variable u = ln( y
k
).

y′ = ry ln(k/y), y(0) = y0

Solution. Using the suggested change of variable u(t) = ln(y(t)) − ln(k) =⇒ du
dt

= du
dy

dy
dt

=
1
y
dy
dt

=⇒ dy
dt

= y du
dt

. Note that y(t) = keu(t). Plugging these into the equation we get

keuu′ = −rkeuu(t), u(0) = ln(y0/k)

This is a straightforward equation to solve, which gives after substituting back u = ln( y
k
),

y(t) = k exp[ce−rt] where c = [ln(y0/k)]. (This equation is known as Gompertz equation.)

Problem 9. Find the solution of the initial value problem:

2y′′ − 3y′ + y = 0, y(0) = 2, y′(0) =
1

2
Find the maximum value of the solution and also the point where the solution is zero.

Solution. Characteristic polynomial is 2r2−3r+1 = 0. Roots are r1 = 1, r2 = 1/2 Therefore
general solution is y(x) = c1e

t + c2e
t/2. Using initial conditions we get c1 = −1, c2 = 3.

Hence general solution is y(x) = −et + 3et/2. find y′(x) set it equal to zero to find max/min
points. Max occurs at t = 2 ln(3

2
). At this point y(x) = 9

4
. y(x) = 0 when et = 3et/2. That

is then ln(1/3) = −t/2 =⇒ t = ln 9.
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