Math 23 Diff Eq: Homework 8

due Wed Nov 23 (or before you leave for break) ... but best if do relevant questions after each lecture

Note on integrals: these days it's professional to check your integrals symbolically, especially since you have a bunch to do to get Fourier coefficients. You could use Matlab's Symbolic Toolbox (separate licence but Dartmouth may have). Or here's example commands in (free) Maple to compute $\int_{-L}^{L} x \sin (n \pi x / L) d x$.

```
assume(n,integer);
f := x*sin(n*x*Pi/L);
A := int(f,x=-L..L);
```

Gives answer $2(-1)^{n+1} L^{2} / n \pi$. How great is that? Not required for our course-this is purely to help you out!

A: Let's finish off the "Linearization... again!" worksheet question I gave you on $11 / 11 / 05$. Please find the critical points of

$$
\begin{aligned}
x^{\prime} & =x y-y \\
y^{\prime} & =x-x^{2}-y
\end{aligned}
$$

and categorize the linearized behavior (A matrix) at each critical point. For the non-0 critical point, does the linear system allow you to predict stability? [Hint: imaginary axis]. Check this by using pplane7 or its applet to plot the (beautiful) trajectories. Is this point in fact stable?
9.3: 7.
10.2: 13 (sawtooth wave), 19 (see Example in 10.3. For the plot you can use the Fourier applet on square-wave setting; you don't need to write Matlab code).

B: Let's derive the orthogonality properties of \sin and \cos on p . 578 . First evaluate $\int_{-1 / 2}^{1 / 2} e^{2 \pi i k y} d y$ for k integer (consider $k=0$ too). Now write sin and cos using Euler's formula. Then expand $\int_{-1 / 2}^{1 / 2} \cos (2 \pi n y) \cos (2 \pi m y) d y$ using Euler's formula, and treat the 4 terms using your first result. Finally, change variable $x=2 L y$. Repeat for the other two orthogonality integrals. This will be painless.
10.3: 2 (Consider the Theorem when drawing the sketch. Watch out for the way series is written in back; you will find expressions such as $\cos n \pi=(-1)^{n}$ for integer n useful), 17 .
10.4: 1, 6, 7,27 (for c \& d, you don't need to plot. Instead just answer d by comparing triangle vs sawtooth waves on the applet, or comparing Fig. 10.2.4 and Fig. 10.4.3).
10.5: $3,7,9$ (your answer should be an infinite sum; it would be nice if you simplified $(1-\cos n \pi)$).

