Math 23 Diff Eq: Homework 6

due Wed Nov 9 ... but best if do relevant questions after each lecture

Hint: In several of these you are to plot the 'phase portrait' (motion in $x_{1}-x_{2}$ plane). This is easiest done with the Matlab tool pplane7 or its online applet version; both are linked to from the course website. If you want to study $\mathbf{x}^{\prime}=A \mathbf{x}$ with

$$
A=\left[\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right]
$$

then, since in pplane7 the variables are called x and y, this can be achieved by entering $x^{\prime}=a * x+b * y$ and $y^{\prime}=c * x+d * y$.
7.3: 4 (note this is similar to how you find eigenvectors for $\lambda=$ eigenvalue), 6,16 (interesting that a real matrix can have complex eigenvalues and vectors; note the conjugate pairing), 22 (easiest to use cofactor formula for $\operatorname{det}(A-\lambda I))$.
7.4: $2 \mathrm{abc}, 4$ (remember $x_{2}^{(1)}$, or x_{21}, is second element of first solution vector. This question shows you 2nd-order and 1st-order-system Wronskians are just facets of the same thing!); 6 (b means to say 'in what time intervals').
7.5: 2, 13 (Hint: you could check your eigen-calculation by entering the matrix into Matlab with $\mathrm{A}=$ [abc; def; ghk] then [V,D]=eig(A), giving (normalized) eigenvectors in columns of V and eigenvalues on diagonal of D), 16, 25.
7.6: 1 (important to be able to do this), 17 .
7.8: 1 (use pplane7), 2.
9.1: 4 (sketch $x_{1}(t)$ by hand by looking at pplane 7 output), 19 .

