Math 23 Diff Eq: Review of 2-by-2 matrices

Alex Barnett, October 7, 2005

You will need to know or pick up these basics for this course (we postpone eigenvalues and eigenvectors until later).

A pair of simultaneous linear equations for two unknowns x_{1}, x_{2} can generally be written

$$
\left.\begin{array}{rl}
a x_{1}+b x_{2} & =y_{1} \tag{1}\\
c x_{1}+d x_{2} & =y_{2}
\end{array}\right\}
$$

The linear algebra way to write the same is

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

which can be summarized by

$$
\begin{equation*}
M \mathrm{x}=\mathbf{y} \tag{2}
\end{equation*}
$$

where M is an order-2 square matrix and \mathbf{x} and \mathbf{y} are column vectors. Make sure you understand how the matrix 'hits' the \mathbf{x} vector to give the LHS terms in the original equations: the product $M \mathbf{x}$ means literally build a linear combination given by x_{1} amount of the first column of M plus x_{2} amount of the second column.

Matrices multiply as follows:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right]
$$

This is just the same as the matrix-vector product, for each column vector of the matrix on the right (the one getting 'hit' from the left). Alternatively, the $(i, j)^{t h}$ entry in the product is given by the dot product of the $i^{t h}$ row of the left matrix with the $j^{t h}$ column of the right matrix. Draw a picture so you get this. In contrast to scalars, matrix multiplication is not commutative, i.e. in general $A B \neq B A$. Order matters!

The determinant is det $M:=a d-b c$ for the above matrix. If det $M=0$ we say M is 'singular'. There are more complicated expressions for det of 3 -by- 3 and higher. If A and B are same-sized square matrices then $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.

All nonsingular matrices are invertible, that is a same-sized matrix M^{-1} exists such that $M M^{-1}=I$ and $M^{-1} M=I$. Here $I:=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the identity matrix, which has ones only on the 'diagonal'. Singular matrices are not invertible. The formula for the 2-by-2 inverse is

$$
\left[\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}
d & -b \\
-c & a
\end{array}\right]
$$

Notice that the factor out front is $1 /(\operatorname{det} M)$.
It's a beautiful result of linear algebra that (1) is uniquely solvable when $\operatorname{det} M \neq 0$. One way to get the solution is to eliminate a variable from the simultaneous equations and solve the high-school way. A more elegant way is to multiply (2) from the left by M^{-1} to give

$$
\begin{equation*}
\mathbf{x}=M^{-1} \mathbf{y} \tag{4}
\end{equation*}
$$

an explicit solution showing the elegance of matrix algebra.

You can 'transpose' M by reflecting along the diagonal to give

$$
M^{T}:=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

Note that 2-by-2 matrices can represent linear (homogeneous) transformations on the plane, i.e. stretching, shear, rotation...

All of the above (suitably generalized) applies to n-by- n matrices too!

Exercises

1. Say $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Find det M and M^{-1}. Solve $M \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{ll}6 & -1\end{array}\right]^{T}$.
2. if $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=A^{T}$, compute $A B$ and $B A$. Are they equal?
3. If $\left[\begin{array}{ll}a & 2 \\ 3 & 4\end{array}\right]$ is singular, what is a ?
4. Verify that M and M^{-1} given by (3) multiply to give I, in either order.
5. Verify that the general solution to (1) given by elimination matches that using (4).
6. If A is singular, prove using the above that $A B$ is not invertible for any B.
7. Prove using the above that $\operatorname{det} M^{-1}=(\operatorname{det} M)^{-1}$.

Answers:

1. $-2,\left[\begin{array}{ll}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right], \mathbf{x}=[-13-19 / 2]^{T}$.
2. $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \neq B A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
3. $a=3 / 2$.
4. it works
5. $x_{1}=\left(d y_{1}-b y_{2}\right) /(a d-b c), x_{2}=\left(-c y_{1}+a y_{2}\right) /(a d-b c)$
6. $\operatorname{det} A B=0 \cdot \operatorname{det} B=0$ always.
7. $1=\operatorname{det} I=\operatorname{det}\left(M M^{-1}\right)=\operatorname{det} M \cdot \operatorname{det} M^{-1}$ now rearrange to give result.
