Basic Terminology

An ordinary differential equation (ODE or just DE) is a system with the following ingredients:

- An independent variable (usually t think "time" or x think "position") that derivatives are taken with respect to.
- A dependent variable, i.e. function of the independent variable, e.g. $y=y(t)$ "the variable y which is a function of t ".
- A multi-variable function F that describes a relationship between the derivatives of the dependent variable (taken with respect to the independent variable) by

$$
\begin{equation*}
F\left(t, y, \frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}, \ldots, \frac{d^{n} y}{d t^{n}}\right)=0 \tag{1}
\end{equation*}
$$

For example the equation

$$
\begin{equation*}
1+\sin (y+t)-\left(\frac{y}{t+1} \frac{d^{2} y}{d t^{2}}\right)^{2}=0 \tag{2}
\end{equation*}
$$

describes a differential equation with independent variable t and dependent variable y and

$$
F\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1+\sin \left(x_{1}+x_{0}\right)-\left(\frac{x_{1}}{x_{0}+1} x_{3}\right)^{2} .
$$

Some comments and definitions

- "Ordinary" implies that there is only one independent variable (i.e. only ever differentiate with respect to that one variable.)
- n is called the order of the ODE $-\frac{d^{n} y}{d t^{n}}$ is the highest derivative that occurs.
- A solution to the ODE is a function (or dependent variable) $y=y(t)$ where the equation (1) holds.

For example, the second order ODE

$$
\begin{equation*}
y+\frac{d^{2} y}{d t^{2}}=0 \tag{3}
\end{equation*}
$$

ode has many solutions, for example $y(t)=\sin t, y(t)=\cos t, y(t)=2 \sin t+\cos t$.
An initial value problem (IVP) is an ODE combined with conditions that the solution (and its derivatives) must satisfy at a particular value of the independent variable (e.g. at a point in time). Such as

$$
\begin{equation*}
y+\frac{d^{2} y}{d t^{2}}=0, \quad y(0)=1, \frac{d y}{d t}(0)=0 \tag{4}
\end{equation*}
$$

Of the given solutions to the ode (3), only $y=\cos t$ is a solution to the IVP (4).
A boundary value problem (BVP) is an ODE combined with conditions that the solution must satisfy at various points. Such as

$$
\begin{equation*}
y+\frac{d^{2} y}{d t^{2}}=0, \quad y(0)=1, y(\pi / 2)=2 \tag{5}
\end{equation*}
$$

Here the solution $y=2 \sin t+\cos t$ for the ODE also solves the BVP.

Differential Operators:

An operator is a map from functions to functions, i.e. it is a procedure that takes a function and returns
another. For example the operator $D=\frac{d}{d t}$ takes a function of $t(\mathrm{e} . \mathrm{g} \mathrm{f}=\mathrm{f}(\mathrm{t}))$ and returns its derivative. We write $D f=\frac{d f}{d t}$.

A function $p=p(t)$ can be thought of as a multiplication operator. Given a function $f=f(t), p$ operates on f by returning the product function $p f$ defined by $(p f)(t)=p(t) f(t)$.

Any two operators can be "multiplied" together. The new action is obtained from the composition of the two operators, e.g.

$$
D^{2} f=D D f=\frac{d}{d t} \frac{d f}{d t}=\frac{d^{2} f}{d t^{2}}
$$

Caution; operator multiplication is not like normal multiplication - order matters. For example if $p=t^{2}$ then $(p D) f=t^{2} \frac{d f}{d t}$ but $(D p) f=\frac{d}{d t}\left(t^{2} f\right)=t^{2} \frac{d f}{d t}+2 t f$.

A differential operator is a combination of D, multiplication operators and familiar operations such as addition and multiplication. It is often useful to write ODE's in terms of operators, e.g. (3) can be re-written as $\left(D^{2}+1\right) y=0$. Here D^{2} just means differentiate twice (with respect to the independent variable) and 1 is the multiplication operator that takes a function and multiplies it by 1 (i.e. returns the same function). The multiplication operator 1 is known as the identity operator. As another example the ODE

$$
\begin{equation*}
1+t^{2} y+\cos t \frac{d y}{d t}=e^{t} \tag{6}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
\left(t^{2}+\cos t D\right) y=e^{t}-1 \tag{7}
\end{equation*}
$$

The left consists of a differential operator applied to the dependent variable, the right is a function of the independent variable alone.

An operator P is linear if $P(f+g)=P f+P g$ for any functions f, g and $P(a f)=a P f$ for any constant a. All multiplication operators and powers of D are linear. For example

$$
D^{2}(f+g)=\frac{d^{2}}{d t^{2}}(f(t)+g(t))=\frac{d^{2} f}{d t^{2}}+\frac{d^{2} g}{d t^{2}}
$$

But the operator $f \mapsto\left(\frac{d f}{d t}+1\right)^{2}$ is not linear as $a f \mapsto\left(a \frac{d f}{d t}+1\right)^{2} \neq a\left(\frac{d f}{d t}+1\right)^{2}$.
An ODE is linear if it can be written in the form

$$
P y=g(t)
$$

where P is a linear differential operator and $g(t)$ is some function of t. For example the ODEs (6) and (3) are linear but the $\mathrm{ODE}(2)$ is not. Anything involving higher powers of y or its derivatives, for example, will be nonlinear.

A linear ODE is homogeneous if $g(t)=0$ and inhomogeneous otherwise.

