To solve

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 3 & 0 \\
-2 & -3 & 2
\end{array}\right) \vec{x}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

we construct an augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 3 \\
1 & 3 & 0 & -1 \\
-2 & -3 & 2 & 2
\end{array}\right)
$$

Reduce to upper triangular form.

Step 1: Use row 1 to clear column 1, rows ≥ 2

$$
\begin{gathered}
r_{1} \\
r_{2}-r_{1} \\
r_{3}+2 r_{1}
\end{gathered} \quad\left(\begin{array}{ccc|c}
1 & 1 & -1 & 3 \\
0 & 2 & 1 & -4 \\
0 & -1 & 0 & 8
\end{array}\right)
$$

Step 2: Use row 2 to clear column 2, rows ≥ 3

$$
\begin{gathered}
r_{1} \\
r_{2} \\
r_{3}+r_{2} / 2
\end{gathered} \quad\left(\begin{array}{ccc|c}
1 & 1 & -1 & 3 \\
0 & 2 & 1 & -4 \\
0 & 0 & 1 / 2 & 6
\end{array}\right)
$$

If you have a larger matrix keep going. Step 3: Use row 3 to clear column 3, row ≥ 4 etc.
This yields the triangular equation

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1 \\
0 & 0 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 \\
-4 \\
6
\end{array}\right)
$$

which solves as $x_{3}=12, x_{2}=\frac{-4-x_{3}}{2}=-8, x_{1}=3-x_{2}-(-1) x_{3}=3+8+12=23$. So

$$
\vec{x}=\left(\begin{array}{c}
23 \\
-8 \\
12
\end{array}\right)
$$

is the solution.

Finding Eigenvalues and Eigenvectors

To find eigenvectors of $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1\end{array}\right)$, we try to solve $(A-\lambda I) \vec{x}=-\overrightarrow{0}$ by row reduction for eigenvalues λ. Thus we shall consider the augmented matrix

$$
\left(\begin{array}{ccc|c}
1-\lambda & 0 & 0 & 0 \\
2 & 1-\lambda & -2 & 0 \\
3 & 2 & 1-\lambda & 0
\end{array}\right)
$$

First we need to find the values of λ by solving

$$
\operatorname{det}(A-\lambda I)=0
$$

Here
$\operatorname{det}(A-\lambda I)=+(1-\lambda) \operatorname{det}\left(\begin{array}{cc}1-\lambda & -2 \\ 2 & 1-\lambda\end{array}\right)-(0) \operatorname{det}\left(\begin{array}{cc}2 & -2 \\ 3 & 1-\lambda\end{array}\right)+(0)\left(\begin{array}{cc}2 & 1-\lambda \\ 3 & 2\end{array}\right)=(1-\lambda)\left(\lambda^{2}-2 \lambda+5\right)$
So $\lambda=1,1+2 i, 1-2 i$.

To find the eigenvector associated to $\lambda=1$ we consider

$$
\begin{aligned}
\begin{aligned}
r_{3} \\
r_{2} \\
r_{1}
\end{aligned} & \left(\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
2 & 0 & -2 & 0 \\
3 & 2 & 0 & 0
\end{array}\right) \\
\begin{aligned}
r_{1} \\
3 r_{2}-2 r_{1} \\
r_{3}
\end{aligned} & \left(\begin{array}{ccc|c}
3 & 2 & 0 & 0 \\
2 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
3 & 2 & 0 & 0 \\
0 & -4 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Recall the reordering of rows, this implies $3 x_{3}+2 x_{2}=0$ and $-4 x_{2}-2 x_{1}=0$. We'll let $x_{2}=\alpha$ be arbitrary. The eigenvectors are then

$$
\vec{x}=\alpha\left(\begin{array}{c}
-2 \\
1 \\
-2 / 3
\end{array}\right)
$$

The other eigenvalues are similar.

