Crash Course in Complex Numbers

Formally a complex number is an ordered pair of real numbers. However we write a complex number z as $z=x+i y$ (or sometimes $z=x+y i$) rather than (x, y). The best way to visualise complex numbers is by thinking of them as points on a plane. The number $z=x+i y$ is the point with horizontal coordinate x and vertical coordinate y. We call x the real part of z and y the imaginary part of z.

Note that any real number a can be thought of a the complex number $a+i 0$. We will always omit $0 i$ when writing and use i and $-i$ for $1 i$ and $-1 i$. Thus we can think of i as being the complex number $0+1 i$.

Complex numbers add and subtract just as if they were vectors, i.e. $(a+b i)+(c+d i)=(a+c)+i(b+d)$. The importance of complex numbers lies in their multiplication which is given by

$$
(a+b i) \cdot(c+d i)=(a c-b d)+i(b c+a d) .
$$

Then it is easy to check that

$$
(i)^{2}=(0+1 i) \cdot(0+1 i)=(0-1)+i(0+0)=-1
$$

Thus we have a valid square-roots for negative numbers

$$
\sqrt{-r}=i \sqrt{r}, \quad \text { for } r \geq 0
$$

Of course we get a second square-root for -1 by considering $-i$ instead. The multiplication of complex numbers seems much more natural when approached from the perspective of polar coordinates. As any complex number z can be thought of as point in the plane, we can determine z by looking at its distance from the origin and the angle between the ray from 0 through z and the positive x-axis.

write $z=(r \cos \theta)+i(r \sin \theta)$. The distance from z to the origin is called the magnitude (or norm) (or absolute value) of z. It's denoted by $|z|$ and can be computed for $z=x+i y$ as

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

Probably the most important formula in the whole subject is the following (known as Euler's formula or sometimes De Moivre's formula)

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

What this means is that in polar coordinates we have the identity

$$
z=r e^{i \theta}
$$

It is easy to check that $\left|e^{i \theta}\right|=1$ so what this does is split z into magnitude and direction. The angle θ is called the argument of z. Multiplication of complex numbers is now easily interpreted

$$
\left(r e^{i \theta}\right) \cdot\left(s e^{i \phi}\right)=(r s) e^{i(\theta+\phi)}
$$

The magnitudes multiply together and the arguments add.

Another useful concept is that of the conjugate of a complex number. For $z=x+i y=r e^{i \theta}$ the complex conjugate of z denoted by \bar{z} is given by

$$
\bar{z}=x-i y=r e^{-i \theta}
$$

Pictorially

Then a simple computation shows that $|z|^{2}=z \bar{z}$. Thus dividing by a complex number z is the same as multiplying by $\frac{\bar{z}}{|z|^{2}}$. For example

$$
\frac{3+2 i}{1-4 i}=(3+2 i) \cdot \frac{1+4 i}{\sqrt{17}}=\frac{1}{\sqrt{17}}(-5+14 i) .
$$

In addition, conjugates often occur naturally in applications for the following reason:

The roots of a quadratic with real coefficients are either both real or are a pair of conjugate complex numbers.

