Methods of proof. Math 22, Summer 2017, Alex Barnett, X-hour 6/29/17 Let's say we have some facts and definitions "on the table": you are a human, a human is a mammal, and a mammal is a warm-blooded animal. You are only allowed to build new results from these ones. | • "By example:" eg. Theorem 1 . Mammals exist. | | | |--|--|--| | <i>Proof.</i> I am a human, so at least one human exists. Humans are mammals. | | | | Comment: Finding such an example is a <i>creative act</i> . In this simple setting you didn't have to look very far. | | | | \bullet "Direct proof:" (apply definitions & use logic). eg. Theorem 2 . Human x is warm-blooded. | | | | <i>Proof.</i> Humans are mammals. Mammals are warm-blooded. | | | | Comment: here the creative act is finding a <i>chain</i> of logic that connect the two concepts in the statement ("human" and "warm-blooded"). | | | | • "By contradiction:" (assume the opposite of the claim then from it derive something impossible). Eg. prove Theorem 2 a different way: | | | | <i>Proof.</i> Assume x is cold-blooded. It follows that a mammal would be cold-blooded, which contradicts the definition of mammal. | | | | • "By contrapositive:" eg. Theorem 3 . Let x be an animal and let x be cold-blooded. Then x is not a human. | | | | The form is $A \Rightarrow B$. We use $\neg A$ to mean "not A ", ie the statement A doesn't hold. Then $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$, which is called the <i>contrapositive</i> . Why equivalent? Check the 2×2 matrix of possibilities of A being false or true, and B being false or true. The theorem and its contrapositive both exclude " A and $\neg B$ " but allow the other three possibilities. Let's use it. | | | | <i>Proof.</i> $\neg B$ is " x is a human". $\neg A$ is " x is warm-blooded." But the implication " x is a human $\Rightarrow x$ is warm-blooded" is precisely Theorem 2 above, which we already proved. | | | | Exercises (relevant to Sec 1.4, 1.5): Prove, using M22 facts so far, and state the proof type: | | | - 1. Let A be a square matrix. If $A\mathbf{x} = \mathbf{b}$ is consistent for all RHS (right hand sides) \mathbf{b} , then the solution is always unique. - 2. Let A be any $m \times n$ matrix. Then the linear system $A\mathbf{x} = \mathbf{0}$ is consistent. - 3. Let $\mathrm{Span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}=\mathbb{R}^m$, then $n\geq m$. (A more chatty version is: "You need at least m vectors to span \mathbb{R}^{m} ". But note you have to handle the more dry language too.) For more detail see documents on the Resources page. Also see our other proof worksheets. ## Solutions to exercises: | 1. | "Direct" proof: Consistent for all RHS \Rightarrow pivot in every row (from lecture). Square and pivot in every row \Rightarrow pivot in every column. Combining the last two, we have there is a pivot in every column. This implies uniqueness, whatever the RHS actually is. \Box | |----|--| | | There is also a "contrapositive" version which is the negation of each step in reverse order. | | 2. | Proof "by example": $\mathbf{x} = 0$ is a solution. \square | | 3. | Proof "by contradiction": Suppose $n < m$ vectors did span \mathbb{R}^m , then there would be a pivot in every row, thus at least m pivots. But there can be at most one pivot in each of the n columns. Contradiction. \square |