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Introduction to proofs

At a fundamental level, mathematics is nothing more than
definitions, theorems, and proofs.

We have to start with some reasonable assumptions and basic
definitions, but once those are established the rest is determined by
proof.

We will start with some simple examples...
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Basic definitions

Definition
A mammal is a warm-blooded animal.



Proof by example

Sometimes the theorem just requires us to exhibit a specific
example.

Theorem
Mammals exist.

Proof.
At least one human exists. Humans are mammals.
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Proof by contrapositive

Let ¬A denote the negation of the statement A.

Let A, B be statements.

The statement A =⇒ B is equivalent (same truth table) to
¬B =⇒ ¬A.

Theorem
If x cold-blooded, then x is not a human.

Proof.
Let A, B be the following statements:

A : x is cold-blooded.

B : x is not a human.

By the previous theorem, we know that ¬B =⇒ ¬A, so the
current theorem follows by contrapositive.
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Equality of sets

Let A and B be sets.
To show A = B it is suffices to show A ⊆ B and B ⊆ A.

Theorem
Span{u, v}︸ ︷︷ ︸

A

= Span{u + v, u− v}︸ ︷︷ ︸
B

.

Proof.
B ⊆ A: Let c1(u + v) + c2(u− v) be an arbitrary element of B.
Then c1(u + v) + c2(u− v) = (c1 + c2)u + (c1 − c2)v ∈ A.
A ⊆ B: Let c1u + c2v ∈ A with c1, c2 ∈ R. Then

c1u + c2v = c1 + c2
2 (u + v) + c1 − c2

2 (u− v) ∈ B.

Since A ⊆ B and B ⊆ A, we conclude that A = B.
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1× 1 linear systems

Consider the 1× 1 linear system: ax = b, a, b ∈ R. For each of
the following claims prove the claim, give a counterexample, or
prove the claim is false. Compare your arguments with you
neighbors and see if you believe each other!



1× 1 linear systems

Consider the 1× 1 linear system: ax = b, a, b ∈ R.

For each of
the following claims prove the claim, give a counterexample, or
prove the claim is false. Compare your arguments with you
neighbors and see if you believe each other!



1× 1 linear systems

Consider the 1× 1 linear system: ax = b, a, b ∈ R. For each of
the following claims prove the claim, give a counterexample, or
prove the claim is false. Compare your arguments with you
neighbors and see if you believe each other!



1× 1 linear systems

Claim
If b = 0, then ax = b is consistent for any a.

Proof.
By example: We exhibit a solution (namely x = 0) that works for
every a.
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Let a, b ∈ R. Then ax = b has a solution.

Proof.
The claim is false. a = 0, b = 1 is a counterexample. We could
also take b to be anything nonzero.
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1× 1 linear systems

Claim
If a 6= 0, then for any b, the system ax = b is consistent and has a
unique solution.

Proof.
Since a 6= 0, we have the solution x = b/a. This proves the system
is consistent. Assume there is another solution y with ay = b.
Then ax = ay since they are both equal to b. Thus a(x − y) = 0.
Now, since a 6= 0, we must have x = y . So the solution is
unique.
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There is some choice of a, b ∈ R so that ax = b has exactly 2
solutions.

Proof.
Suppose there are 2 distinct solutions x , y , x 6= y . Then
a(x − y) = 0. Since x 6= y we must have a = 0. Since the system
is consistent (we assumed we had solutions) we must have b = 0.
Does this prove or disprove the claim?
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If b = 0, then ax = b always has a unique solution.
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If a = 0, then any x is a solution.
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