Lecture X01

Math 22 Summer 2017 Section 2
June 27, 2017

Introduction to proofs

Introduction to proofs

At a fundamental level, mathematics is nothing more than definitions, theorems, and proofs.

Introduction to proofs

At a fundamental level, mathematics is nothing more than definitions, theorems, and proofs.

We have to start with some reasonable assumptions and basic definitions, but once those are established the rest is determined by proof.

Introduction to proofs

At a fundamental level, mathematics is nothing more than definitions, theorems, and proofs.

We have to start with some reasonable assumptions and basic definitions, but once those are established the rest is determined by proof.

We will start with some simple examples...

Basic definitions

Definition

A mammal is a warm-blooded animal.

Proof by example

Proof by example

Sometimes the theorem just requires us to exhibit a specific example.

Proof by example

Sometimes the theorem just requires us to exhibit a specific example.

Theorem
Mammals exist.

Proof by example

Sometimes the theorem just requires us to exhibit a specific example.

Theorem
Mammals exist.
Proof.
At least one human exists. Humans are mammals.

Direct proof

Direct proof

In a direct proof we use the definitions and apply logical arguments to deduce the statement of the theorem.

Direct proof

In a direct proof we use the definitions and apply logical arguments to deduce the statement of the theorem.

Theorem

Human x is warm-blooded.

Direct proof

In a direct proof we use the definitions and apply logical arguments to deduce the statement of the theorem.

Theorem
Human x is warm-blooded.
Proof.
Humans are mammals. Mammals are warm-blooded.

Proof by contradiction

Proof by contradiction

Here we assume the opposite of the claim and try to deduce something impossible.

Proof by contradiction

Here we assume the opposite of the claim and try to deduce something impossible.

Theorem

Human x is warm-blooded.

Proof by contradiction

Here we assume the opposite of the claim and try to deduce something impossible.

Theorem

Human x is warm-blooded.

Proof.

Assume x is cold-blooded. Then a mammal would be cold-blooded which is impossible (a contradiction) by the definition of mammal.

Proof by contrapositive

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.
Let A, B be statements.

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.
Let A, B be statements.
The statement $A \Longrightarrow B$ is equivalent (same truth table) to $\neg B \Longrightarrow \neg A$.

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.
Let A, B be statements.
The statement $A \Longrightarrow B$ is equivalent (same truth table) to $\neg B \Longrightarrow \neg A$.

Theorem
If x cold-blooded, then x is not a human.

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.
Let A, B be statements.
The statement $A \Longrightarrow B$ is equivalent (same truth table) to $\neg B \Longrightarrow \neg A$.

Theorem
If x cold-blooded, then x is not a human.
Proof.
Let A, B be the following statements:

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.
Let A, B be statements.
The statement $A \Longrightarrow B$ is equivalent (same truth table) to $\neg B \Longrightarrow \neg A$.

Theorem
If x cold-blooded, then x is not a human.
Proof.
Let A, B be the following statements:
A : x is cold-blooded.
B : x is not a human.

Proof by contrapositive

Let $\neg A$ denote the negation of the statement A.
Let A, B be statements.
The statement $A \Longrightarrow B$ is equivalent (same truth table) to $\neg B \Longrightarrow \neg A$.

Theorem
If x cold-blooded, then x is not a human.
Proof.
Let A, B be the following statements:
A: x is cold-blooded.
B : x is not a human.
By the previous theorem, we know that $\neg B \Longrightarrow \neg A$, so the current theorem follows by contrapositive.

Equality of sets

Equality of sets

Let A and B be sets.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.
Proof.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.
Proof.
$B \subseteq A$:

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Proof.

$B \subseteq A:$ Let $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})$ be an arbitrary element of B.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Proof.

$B \subseteq A$: Let $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})$ be an arbitrary element of B.
Then $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})=\left(c_{1}+c_{2}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v} \in A$.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Proof.

$B \subseteq A$: Let $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})$ be an arbitrary element of B.
Then $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})=\left(c_{1}+c_{2}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v} \in A$.
$A \subseteq B$:

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Proof.

$B \subseteq A$: Let $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})$ be an arbitrary element of B.
Then $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})=\left(c_{1}+c_{2}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v} \in A$.
$A \subseteq B$: Let $c_{1} \mathbf{u}+c_{2} \mathbf{v} \in A$ with $c_{1}, c_{2} \in \mathbb{R}$.

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Proof.

$B \subseteq A$: Let $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})$ be an arbitrary element of B.
Then $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})=\left(c_{1}+c_{2}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v} \in A$.
$A \subseteq B$: Let $c_{1} \mathbf{u}+c_{2} \mathbf{v} \in A$ with $c_{1}, c_{2} \in \mathbb{R}$. Then

$$
c_{1} \mathbf{u}+c_{2} \mathbf{v}=\frac{c_{1}+c_{2}}{2}(\mathbf{u}+\mathbf{v})+\frac{c_{1}-c_{2}}{2}(\mathbf{u}-\mathbf{v}) \in B .
$$

Equality of sets

Let A and B be sets.
To show $A=B$ it is suffices to show $A \subseteq B$ and $B \subseteq A$.
Theorem
$\underbrace{\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}}_{A}=\underbrace{\operatorname{Span}\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}}_{B}$.

Proof.

$B \subseteq A$: Let $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})$ be an arbitrary element of B.
Then $c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})=\left(c_{1}+c_{2}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v} \in A$.
$A \subseteq B$: Let $c_{1} \mathbf{u}+c_{2} \mathbf{v} \in A$ with $c_{1}, c_{2} \in \mathbb{R}$. Then

$$
c_{1} \mathbf{u}+c_{2} \mathbf{v}=\frac{c_{1}+c_{2}}{2}(\mathbf{u}+\mathbf{v})+\frac{c_{1}-c_{2}}{2}(\mathbf{u}-\mathbf{v}) \in B .
$$

Since $A \subseteq B$ and $B \subseteq A$, we conclude that $A=B$.

1×1 linear systems

Consider the 1×1 linear system: $a x=b, a, b \in \mathbb{R}$.

Consider the 1×1 linear system: $a x=b, a, b \in \mathbb{R}$. For each of the following claims prove the claim, give a counterexample, or prove the claim is false. Compare your arguments with you neighbors and see if you believe each other!

1×1 linear systems

Claim

If $b=0$, then $a x=b$ is consistent for any a.

Claim

If $b=0$, then $a x=b$ is consistent for any a.

Proof.

By example: We exhibit a solution (namely $x=0$) that works for every a.

1×1 linear systems

Claim

Let $a, b \in \mathbb{R}$. Then $a x=b$ has a solution.

Claim

Let $a, b \in \mathbb{R}$. Then $a x=b$ has a solution.

Proof.

The claim is false. $a=0, b=1$ is a counterexample. We could also take b to be anything nonzero.

1×1 linear systems

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

1×1 linear systems

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

Proof.

Since $a \neq 0$, we have the solution $x=b / a$. This proves the system is consistent.

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

Proof.

Since $a \neq 0$, we have the solution $x=b / a$. This proves the system is consistent. Assume there is another solution y with $a y=b$.

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

Proof.

Since $a \neq 0$, we have the solution $x=b / a$. This proves the system is consistent. Assume there is another solution y with $a y=b$. Then $a x=a y$ since they are both equal to b.

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

Proof.

Since $a \neq 0$, we have the solution $x=b / a$. This proves the system is consistent. Assume there is another solution y with $a y=b$. Then $a x=a y$ since they are both equal to b. Thus $a(x-y)=0$.

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

Proof.

Since $a \neq 0$, we have the solution $x=b / a$. This proves the system is consistent. Assume there is another solution y with $a y=b$. Then $a x=a y$ since they are both equal to b. Thus $a(x-y)=0$. Now, since $a \neq 0$, we must have $x=y$.

Claim

If $a \neq 0$, then for any b, the system $a x=b$ is consistent and has a unique solution.

Proof.

Since $a \neq 0$, we have the solution $x=b / a$. This proves the system is consistent. Assume there is another solution y with $a y=b$. Then $a x=a y$ since they are both equal to b. Thus $a(x-y)=0$. Now, since $a \neq 0$, we must have $x=y$. So the solution is unique.

1×1 linear systems

Claim

There is some choice of $a, b \in \mathbb{R}$ so that $a x=b$ has exactly 2 solutions.

1×1 linear systems

Claim

There is some choice of $a, b \in \mathbb{R}$ so that $a x=b$ has exactly 2 solutions.

Proof.

Suppose there are 2 distinct solutions $x, y, x \neq y$.

1×1 linear systems

Claim

There is some choice of $a, b \in \mathbb{R}$ so that $a x=b$ has exactly 2 solutions.

Proof.

Suppose there are 2 distinct solutions $x, y, x \neq y$. Then $a(x-y)=0$.

1×1 linear systems

Claim

There is some choice of $a, b \in \mathbb{R}$ so that $a x=b$ has exactly 2 solutions.

Proof.

Suppose there are 2 distinct solutions $x, y, x \neq y$. Then $a(x-y)=0$. Since $x \neq y$ we must have $a=0$.

Claim

There is some choice of $a, b \in \mathbb{R}$ so that $a x=b$ has exactly 2 solutions.

Proof.

Suppose there are 2 distinct solutions $x, y, x \neq y$. Then $a(x-y)=0$. Since $x \neq y$ we must have $a=0$. Since the system is consistent (we assumed we had solutions) we must have $b=0$.

Claim

There is some choice of $a, b \in \mathbb{R}$ so that $a x=b$ has exactly 2 solutions.

Proof.

Suppose there are 2 distinct solutions $x, y, x \neq y$. Then $a(x-y)=0$. Since $x \neq y$ we must have $a=0$. Since the system is consistent (we assumed we had solutions) we must have $b=0$. Does this prove or disprove the claim?

1×1 linear systems

Claim

If $b=0$, then $a x=b$ always has a unique solution.

1×1 linear systems

Claim

If $b=0$, then $a x=b$ always has a unique solution.
Proof.
If $a=0$, then any x is a solution.

