Lecture 29

Math 22 Summer 2017
August 23, 2017

Just for today

- SVD concluded
- Review

SVD spectral-like decomposition

SVD spectral-like decomposition

Let $A=U \Sigma V^{T}$ be an SVD of A (with rank r).

SVD spectral-like decomposition

Let $A=U \Sigma V^{T}$ be an SVD of A (with rank r).

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[\begin{array}{lllll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

SVD spectral-like decomposition

Let $A=U \Sigma V^{T}$ be an SVD of A (with rank r).

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[\begin{array}{llllll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

Each term in this sum is an $m \times n$ matrix of rank 1 .

SVD spectral-like decomposition

Let $A=U \Sigma V^{\top}$ be an SVD of A (with rank r).

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[\sigma_{1} \mathbf{u}_{1} \cdots \sigma_{r} \mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

Each term in this sum is an $m \times n$ matrix of rank 1 . Decomposing A into a sum of rank 1 matrices (ordered by the singular values) is the starting point for applications involving low rank approximations of A.

Low rank approximation example

Recall example 格:

Low rank approximation example

Recall example 烙:

$$
\begin{aligned}
\underbrace{\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]}_{A_{3 \times 2}} & =\underbrace{\left[\begin{array}{rrr}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]}_{\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]} \underbrace{\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]}_{\Sigma_{3 \times 2}} \underbrace{\left[\begin{array}{rr}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]^{T}}_{\left[\begin{array}{l}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T}
\end{array}\right]} \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} \\
& =\left[\begin{array}{ll}
6 & 3 \\
6 & 3 \\
0 & 0
\end{array}\right]+\left[\begin{array}{rr}
1 & -2 \\
-1 & 2 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Low rank approximation example

Recall example ${ }^{2}$ 多:

$$
\underbrace{\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]}_{A_{3 \times 2}}=\underbrace{\left[\begin{array}{rrr}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]}_{\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]} \underbrace{\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]}_{\Sigma_{3 \times 2}} \underbrace{\left[\begin{array}{rr}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]^{T}}_{\left[\begin{array}{l}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T}
\end{array}\right]}
$$

$$
\begin{aligned}
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} \\
& =\left[\begin{array}{ll}
l l & 3 \\
6 & 3 \\
0 & 0
\end{array}\right]+\left[\begin{array}{rr}
1 & -2 \\
-1 & 2 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Which rank 1 matrix "best approximates" A?

