

Lecture 28

Math 22 Summer 2017 August 21, 2017

SVD and applications

First we compute AV:

First we compute AV:

$$AV = [A\mathbf{v}_1 \cdots A\mathbf{v}_n]$$

= $[A\mathbf{v}_1 \cdots A\mathbf{v}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$
= $[\sigma_1\mathbf{u}_1 \cdots \sigma_r\mathbf{u}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$

1769

First we compute AV:

$$AV = [A\mathbf{v}_1 \cdots A\mathbf{v}_n]$$

= $[A\mathbf{v}_1 \cdots A\mathbf{v}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$
= $[\sigma_1\mathbf{u}_1 \cdots \sigma_r\mathbf{u}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$

Now compute $U\Sigma$:

First we compute AV:

$$AV = [A\mathbf{v}_1 \cdots A\mathbf{v}_n]$$

= $[A\mathbf{v}_1 \cdots A\mathbf{v}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$
= $[\sigma_1\mathbf{u}_1 \cdots \sigma_r\mathbf{u}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$

Now compute $U\Sigma$:

$$U\Sigma = [\mathbf{u}_1 \cdots \mathbf{u}_m] \begin{bmatrix} \sigma_1 & & \\ & \ddots & 0 \\ & & \sigma_r \\ \hline & 0 & \bullet \end{bmatrix} = [\sigma_1 \mathbf{u}_1 \cdots \sigma_r \mathbf{u}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$$

First we compute AV:

$$AV = [A\mathbf{v}_1 \cdots A\mathbf{v}_n]$$

= $[A\mathbf{v}_1 \cdots A\mathbf{v}_r \ \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$
= $[\sigma_1\mathbf{u}_1 \cdots \sigma_r\mathbf{u}_r \ \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$

Now compute $U\Sigma$:

$$U\Sigma = [\mathbf{u}_1 \cdots \mathbf{u}_m] \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \\ \hline & & 0 \end{bmatrix} = [\sigma_1 \mathbf{u}_1 \cdots \sigma_r \mathbf{u}_r \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]$$

Thus

$$U\Sigma V^{T} = (U\Sigma)V^{T} = (AV)V^{T} = A(VV^{T}) = AI_{n} = A.$$

§7.4 SVD Example 🗞

§7.4 SVD Example 🗞

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric.

-

-

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values?

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}, \ \sigma_2 = \sqrt{10}.$

-

-

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}, \sigma_2 = \sqrt{10}$. Thus

$$\Sigma = \begin{bmatrix} \sqrt{90} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{bmatrix}.$$

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}$, $\sigma_2 = \sqrt{10}$. Thus

$$\Sigma = \begin{bmatrix} \sqrt{90} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{bmatrix}.$$

How do we find V?

F = 2 7

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}, \sigma_2 = \sqrt{10}$. Thus

$$\Sigma = \begin{bmatrix} \sqrt{90} & 0\\ 0 & \sqrt{10}\\ 0 & 0 \end{bmatrix}.$$

How do we find V? The columns of V are normalized eigenvectors of $A^T A$.

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}$, $\sigma_2 = \sqrt{10}$. Thus

$$\Sigma = \begin{bmatrix} \sqrt{90} & 0\\ 0 & \sqrt{10}\\ 0 & 0 \end{bmatrix}.$$

How do we find V? The columns of V are normalized eigenvectors of $A^T A$. A basis for $\text{Nul}(A^T A - 90I_2)$ is $\{[2\ 1]^T\}$.

F = 2 7

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}, \sigma_2 = \sqrt{10}$. Thus

$$\Sigma = \begin{bmatrix} \sqrt{90} & 0\\ 0 & \sqrt{10}\\ 0 & 0 \end{bmatrix}.$$

How do we find V? The columns of V are normalized eigenvectors of $A^T A$. A basis for $\operatorname{Nul}(A^T A - 90I_2)$ is $\{[2\ 1]^T\}$. A basis for $\operatorname{Nul}(A^T A - 10I_2)$ is $\{[-1\ 2]^T\}$.

Let
$$A = \begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$$
 Then $A^T A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$ Looks symmetric. The charpoly of $A^T A$ is $(\lambda - 90)(\lambda - 10)$, so what are the singular values? $\sigma_1 = \sqrt{90}$, $\sigma_2 = \sqrt{10}$. Thus

$$\Sigma = \begin{bmatrix} \sqrt{90} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{bmatrix}.$$

How do we find V? The columns of V are normalized eigenvectors of $A^T A$. A basis for $\operatorname{Nul}(A^T A - 90I_2)$ is $\{[2\ 1]^T\}$. A basis for $\operatorname{Nul}(A^T A - 10I_2)$ is $\{[-1\ 2]^T\}$. Normalizing we get that

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 2/\sqrt{5} \ -1/\sqrt{5} \\ 1/\sqrt{5} \ 2/\sqrt{5} \end{bmatrix}.$$

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$.

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$.

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

Is $\{\boldsymbol{u}_1,\boldsymbol{u}_2\}$ a basis for $\mathbb{R}^3?$

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

Is $\{u_1,u_2\}$ a basis for $\mathbb{R}^3?$ No!

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

Is $\{\boldsymbol{u}_1,\boldsymbol{u}_2\}$ a basis for $\mathbb{R}^3?$ No! We need to extend it to a basis of $\mathbb{R}^3.$

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

Is $\{u_1,u_2\}$ a basis for $\mathbb{R}^3?$ No! We need to extend it to a basis of $\mathbb{R}^3.$ So what is $u_3?$

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

Is { u_1, u_2 } a basis for \mathbb{R}^3 ? No! We need to extend it to a basis of \mathbb{R}^3 . So what is u_3 ? $u_3 = [0 \ 0 \ 1]^T$.

We have $\Sigma_{3\times 2}$ and $V_{2\times 2}$. We need to compute $U_{3\times 3}$. To do this we compute:

$$A\mathbf{v}_{1} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ 3\sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{1} = \frac{A\mathbf{v}_{1}}{\|A\mathbf{v}_{1}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$
$$A\mathbf{v}_{2} = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -\sqrt{5}\\ \sqrt{5}\\ 0 \end{bmatrix} \implies \mathbf{u}_{2} = \frac{A\mathbf{v}_{2}}{\|A\mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2}\\ 0 \end{bmatrix}$$

Is $\{\mathbf{u}_1, \mathbf{u}_2\}$ a basis for \mathbb{R}^3 ? No! We need to extend it to a basis of \mathbb{R}^3 . So what is \mathbf{u}_3 ? $\mathbf{u}_3 = [0 \ 0 \ 1]^T$. Then $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$.

We can now verify that our singular value decomposition of \boldsymbol{A} works:

We can now verify that our singular value decomposition of A works:

We can now verify that our singular value decomposition of *A* works:

$$\underbrace{\begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}}_{A_{3\times 2}} = \underbrace{\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{U_{3\times 3}} \underbrace{\begin{bmatrix} \sqrt{90} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{bmatrix}}_{\Sigma_{3\times 2}} \underbrace{\begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}^{T}}_{V_{2\times 2}^{T}}$$

For some small 2 \times 2 examples you might want to take a look at https://goo.gl/oiFXd8

§7.4 SVD and fundamental spaces

§7.4 SVD and fundamental spaces

 $\mathsf{Recall}\;(\mathrm{Row} A)^{\perp} = \mathrm{Nul} A$

Recall
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}}).$

Recall
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}}).$

Let A have rank r,

Recall $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}}).$

Let A have rank r, and consider the SVD:

Recall $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}}).$

Let A have rank r, and consider the SVD:

Recall $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathcal{T}})$.

Let A have rank r, and consider the SVD:

• $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ is an orthonormal basis of ColA.

1769

 $\text{Recall } (\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \text{ and } (\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}}).$

Let A have rank r, and consider the SVD:

{u₁,...,u_r} is an orthonormal basis of ColA.
 {u_{r+1},...,u_n} is an orthonormal basis of (ColA)[⊥].

Recall $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}}).$

Let A have rank r, and consider the SVD:

{u₁,..., u_r} is an orthonormal basis of ColA.
{u_{r+1},..., u_n} is an orthonormal basis of (ColA)[⊥].
{v_{r+1},..., v_n} is an orthonormal basis of NulA.

Recall
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}})$.

Let A have rank r, and consider the SVD:

{u₁,..., u_r} is an orthonormal basis of ColA.
{u_{r+1},..., u_n} is an orthonormal basis of (ColA)[⊥].
{v_{r+1},..., v_n} is an orthonormal basis of NulA.
{v₁,..., v_r} is an orthonormal basis of (NulA)[⊥].

Suppose $A = U\Sigma V^T$ is an SVD of A.

Suppose $A = U\Sigma V^T$ is an SVD of A. We can use this to find an SVD of A^T .

What is the benefit?

What is the benefit? If A is $m \times n$, then the SVD of A requires us to orthogonally diagonalize an $n \times n$ matrix $A^T A$.

What is the benefit? If A is $m \times n$, then the SVD of A requires us to orthogonally diagonalize an $n \times n$ matrix $A^T A$. The SVD of A^T requires us to orthogonally diagonalize an $m \times m$ matrix $(A^T)^T (A^T) = AA^T$.

What is the benefit? If A is $m \times n$, then the SVD of A requires us to orthogonally diagonalize an $n \times n$ matrix $A^T A$. The SVD of A^T requires us to orthogonally diagonalize an $m \times m$ matrix $(A^T)^T (A^T) = AA^T$. So if we are computing an SVD by hand we might want to pick the smaller of the m and n.

Classwork

Find an SVD for

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}.$$

Find an SVD for

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}.$$

Let
$$B = A^T$$
.
Note $A^T A$ is 3×3 and AA^T is 2×2 .
Also note that

$$B^{\mathsf{T}}B = AA^{\mathsf{T}} = \begin{bmatrix} 17 & 8\\ 8 & 17 \end{bmatrix}.$$

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$.

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So B has singular values $\sigma_1 = 5, \sigma_2 = 3$.

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\sigma_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues.

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\sigma_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$.

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

So now we have V and Σ (for $B = A^T$ remember)

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

So now we have V and Σ (for $B = A^T$ remember) and it remains to find U.

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

So now we have V and Σ (for $B = A^T$ remember) and it remains to find U.

Note that r = 2 and $\{B\mathbf{v}_1, B\mathbf{v}_2\}$ is an orthogonal basis for ColB.

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

So now we have V and Σ (for $B = A^T$ remember) and it remains to find U.

Note that r = 2 and $\{B\mathbf{v}_1, B\mathbf{v}_2\}$ is an orthogonal basis for ColB. We have

$$B\mathbf{v}_1 = \begin{bmatrix} 5/\sqrt{2} \\ 5/\sqrt{2} \\ 0 \end{bmatrix}, \quad B\mathbf{v}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ -4/\sqrt{2} \end{bmatrix}$$

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

So now we have V and Σ (for $B = A^T$ remember) and it remains to find U.

Note that r = 2 and $\{B\mathbf{v}_1, B\mathbf{v}_2\}$ is an orthogonal basis for ColB. We have

$$B\mathbf{v}_1 = \begin{bmatrix} 5/\sqrt{2} \\ 5/\sqrt{2} \\ 0 \end{bmatrix}, \quad B\mathbf{v}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ -4/\sqrt{2} \end{bmatrix}$$

and $\mathbf{u}_1 = (B\mathbf{v}_1)/\sigma_1, \mathbf{u}_2 = (B\mathbf{v}_2)/\sigma_2.$

 $B^T B$ has eigenvalues $\lambda_1 = 25, \lambda_2 = 9$. So *B* has singular values $\tau_1 = 5, \sigma_2 = 3$. Now find eigenvectors of $B^T B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_1 = [1 \ 1]^T$ and $\mathbf{x}_2 = [-1 \ 1]^T$. Now we obtain

$$V = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

So now we have V and Σ (for $B = A^T$ remember) and it remains to find U.

Note that r = 2 and $\{B\mathbf{v}_1, B\mathbf{v}_2\}$ is an orthogonal basis for ColB. We have

$$B\mathbf{v}_1 = \begin{bmatrix} 5/\sqrt{2} \\ 5/\sqrt{2} \\ 0 \end{bmatrix}, \quad B\mathbf{v}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ -4/\sqrt{2} \end{bmatrix}$$

and $\mathbf{u}_1 = (B\mathbf{v}_1)/\sigma_1, \mathbf{u}_2 = (B\mathbf{v}_2)/\sigma_2$. How do we get \mathbf{u}_3 ?

Classwork solutions continued

We need to extend $\{\textbf{u}_1,\textbf{u}_2\}$ to an orthonormal basis of $\mathbb{R}^3.$

We need to extend $\{u_1,u_2\}$ to an orthonormal basis of $\mathbb{R}^3.$ First find a vector that isn't in the span of $\{u_1,u_2\}.$

We need to extend $\{u_1,u_2\}$ to an orthonormal basis of \mathbb{R}^3 . First find a vector that isn't in the span of $\{u_1,u_2\}.$ $e_3\in\mathbb{R}^3$ works.

We need to extend $\{u_1,u_2\}$ to an orthonormal basis of \mathbb{R}^3 . First find a vector that isn't in the span of $\{u_1,u_2\}.$ $e_3\in\mathbb{R}^3$ works. Now use Gram-Schmidt.

We need to extend $\{u_1,u_2\}$ to an orthonormal basis of \mathbb{R}^3 . First find a vector that isn't in the span of $\{u_1,u_2\}.$ $e_3\in\mathbb{R}^3$ works. Now use Gram-Schmidt. We get

$$\mathbf{x} = \mathbf{e}_3 - \frac{\mathbf{e}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{e}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} -2/9\\ 2/9\\ 1/9 \end{bmatrix}$$

We need to extend $\{u_1, u_2\}$ to an orthonormal basis of \mathbb{R}^3 . First find a vector that isn't in the span of $\{u_1, u_2\}$. $e_3 \in \mathbb{R}^3$ works. Now use Gram-Schmidt. We get

$$\mathbf{x} = \mathbf{e}_3 - \frac{\mathbf{e}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{e}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} -2/9\\ 2/9\\ 1/9 \end{bmatrix}$$

Then $\mathbf{u}_3 = \mathbf{x} / \|\mathbf{x}\| = [-2/3 \ 2/3 \ 1/3]^T$.

We need to extend $\{\mathbf{u}_1, \mathbf{u}_2\}$ to an orthonormal basis of \mathbb{R}^3 . First find a vector that isn't in the span of $\{\mathbf{u}_1, \mathbf{u}_2\}$. $\mathbf{e}_3 \in \mathbb{R}^3$ works. Now use Gram-Schmidt. We get

$$\mathbf{x} = \mathbf{e}_3 - \frac{\mathbf{e}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{e}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} -2/9\\ 2/9\\ 1/9 \end{bmatrix}.$$

Then $\mathbf{u}_3 = \mathbf{x} / \|\mathbf{x}\| = [-2/3 \ 2/3 \ 1/3]^T$. So what is the conclusion?

Classwork solutions concluded

$$A^{T} = U\Sigma V^{T}$$

$$= \begin{bmatrix} 1/\sqrt{2} & -1/(3\sqrt{2}) & -2/3 \\ 1/\sqrt{2} & 1/(3\sqrt{2}) & 2/3 \\ 0 & -4/(3\sqrt{2}) & 1/3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$A^{T} = U\Sigma V^{T}$$

$$= \begin{bmatrix} 1/\sqrt{2} & -1/(3\sqrt{2}) & -2/3 \\ 1/\sqrt{2} & 1/(3\sqrt{2}) & 2/3 \\ 0 & -4/(3\sqrt{2}) & 1/3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$A = V\Sigma^{T}U^{T}$$
$$= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/(3\sqrt{2}) & 1/(3\sqrt{2}) & -4/(3\sqrt{2}) \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$$

Constrained optimization

Consider the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix A.

Consider the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix A. What is the maximum of $||A\mathbf{x}||$ subject to the constraint that $||\mathbf{x}|| = 1$?

Consider the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix A. What is the maximum of $||A\mathbf{x}||$ subject to the constraint that $||\mathbf{x}|| = 1$? It turns out (see §7.3) that the maximum of $||A\mathbf{x}||$ is σ_1 the largest singular value of A,

Consider the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix A. What is the maximum of $||A\mathbf{x}||$ subject to the constraint that $||\mathbf{x}|| = 1$? It turns out (see §7.3) that the maximum of $||A\mathbf{x}||$ is σ_1 the largest singular value of A, and $||A\mathbf{v}_1|| = ||\sigma_1\mathbf{v}_1|| = \sigma_1$.

Consider the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix A. What is the maximum of $||A\mathbf{x}||$ subject to the constraint that $||\mathbf{x}|| = 1$? It turns out (see §7.3) that the maximum of $||A\mathbf{x}||$ is σ_1 the largest singular value of A, and $||A\mathbf{v}_1|| = ||\sigma_1\mathbf{v}_1|| = \sigma_1$.

SVD allows us to find an explicit vector \mathbf{x} in the domain of T (subject to the constraint) so that $||A\mathbf{x}||$ is as large as possible.

Consider the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by an $m \times n$ matrix A. What is the maximum of $||A\mathbf{x}||$ subject to the constraint that $||\mathbf{x}|| = 1$? It turns out (see §7.3) that the maximum of $||A\mathbf{x}||$ is σ_1 the largest singular value of A, and $||A\mathbf{v}_1|| = ||\sigma_1\mathbf{v}_1|| = \sigma_1$.

SVD allows us to find an explicit vector \mathbf{x} in the domain of T (subject to the constraint) so that $||A\mathbf{x}||$ is as large as possible.

Also, this might be the right time to take a look at https://goo.gl/oiFXd8.

 $A = U\Sigma V^{T}$ = $[\sigma_{1}\mathbf{u}_{1} \cdots \sigma_{r}\mathbf{u}_{r} \mathbf{0}\cdots\mathbf{0}]\begin{bmatrix}\mathbf{v}_{1}^{T}\\\vdots\\\mathbf{v}_{n}^{T}\end{bmatrix}$ = $\sigma_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{T} + \cdots + \sigma_{r}\mathbf{u}_{r}\mathbf{v}_{r}^{T}$

$$A = U\Sigma V^{T}$$

= $[\sigma_{1}\mathbf{u}_{1} \cdots \sigma_{r}\mathbf{u}_{r} \mathbf{0}\cdots\mathbf{0}]\begin{bmatrix}\mathbf{v}_{1}^{T}\\\vdots\\\mathbf{v}_{n}^{T}\end{bmatrix}$
= $\sigma_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{T}+\cdots+\sigma_{r}\mathbf{u}_{r}\mathbf{v}_{r}^{T}$

Each term in this sum is an $m \times n$ matrix of rank 1.

$$A = U\Sigma V^{T}$$

= $[\sigma_{1}\mathbf{u}_{1} \cdots \sigma_{r}\mathbf{u}_{r} \mathbf{0}\cdots\mathbf{0}] \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{bmatrix}$
= $\sigma_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{T} + \cdots + \sigma_{r}\mathbf{u}_{r}\mathbf{v}_{r}^{T}$

Each term in this sum is an $m \times n$ matrix of rank 1. Decomposing A into a sum of rank 1 matrices (ordered by the singular values) is the starting point for applications involving low rank approximations of A.