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Just for today

» SVD and applications
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§7.4 Proof of Theorem 10

First we compute AV:

AV = [Avy - Av,]
:[Avl Avr 0--. 0]
—r
=[owy -+ opu, 0 - 0]

Now compute UZ:

U =[u; - up]

Thus

UV = (UD)VT = (AV)VT = AWT) = Al, = A
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§7.4 SVD Example

T 74 32 —
Let A= |55 | Then ATA= Looks symmetric. The
00 32 26

charpoly of AT A'is (A — 90)(\ — 10), so what are the singular
values? o1 = v/90, o = v/10. Thus

VOO 0
Y = 0410 .
0 0

How do we find V? The columns of V are normalized eigenvectors
of ATA. A basis for Nul(ATA —90h) is {[21]"}. A basis for
Nul(ATA —10h) is {[~12]7}. Normalizing we get that

V= _12/VB-1/V5
_[V1V2]— 1/\/5 2/\/5
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We have 2342 and Voyo. We need to compute Usx3. To do this

we compute:

71
55
00

71
55
00

AV1 =

AV2 =
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2/V5 | 3
IRIES
BT
-1/V5| _
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We have 2342 and Voyo. We need to compute Usx3. To do this

we compute:

71
2/\/51
Avi = |55
1 00 ll/*/g
71
_ —1/«31
Av, = |55
i 00 lz/\/g

Is {ug,us} a basis for R3?

- v

3v/5 |
= {35
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We have 2342 and Voyo. We need to compute Usx3. To do this

we compute:

71

2/\/51
Avi = [ 55 =

1 00 [1/\/3

71

_ —wﬁl _
Avo, = |55 =

i 00 l 2/\/3

Is {ug,uy} a basis for R3? No!

V5

3v/5 ]
3V5
0

V5
0

1)y
1/V2
0
1)y
1/v2
0
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We have 2342 and Voyo. We need to compute Usx3. To do this
we compute:

71 3v/5 | [1/v2
2/\/5] Avy
Avi = |55 =3V = u= = [1/V2
" oo [1/*/3 0| o Al _/ 0
71 —/5 | [—1/v2
. —1/\/3 . . AV2 .
M P l 2/x/3]_ Vol T e | V2

Is {u1,us} a basis for R3? No! We need to extend it to a basis of
R3. So what is uz? uz3 =[001]7. Then U = [u; us u3].
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We can now verify that our singular value decomposition of A
works:

71 1/vV2 -1/v/20] [v90 0O B T
55 =11/vV2 1/v20 li;ﬁ Zﬁ]

00 0 01
D VT
Azx2 Usxs Y3%2 2%2
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§7.4 Example & concluded

We can now verify that our singular value decomposition of A
works:

71 1/vV2 -1/v/20] [v90 0O 215 —1/v5]T
55| =[1/vV2 1/v20 0 V10 [/ —1/ ]
00 0 01 0o o| YV 2/V5
N—— VT

Aszx2 Usxs Y32 2x2

For some small 2 x 2 examples you might want to take a look at
https://goo.gl/0iFXd8
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§7.4 SVD and fundamental spaces

Recall (RowA)* = NulA and (ColA)* = Nul(AT). W
Let A have rank r, and consider the SVD:
T
v.T
[up «-- upupr oo up) I
Vr+1
L vy ]
» {uy,...,u,} is an orthonormal basis of ColA.
» {u,11,...,u,} is an orthonormal basis of (ColA)*.
» {Vr41,...,Vp} is an orthonormal basis of NulA.

» {v1,...,v,} is an orthonormal basis of (NulA)*.
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Suppose A= UX VT is an SVD of A. We can use this to find an
SVD of AT. Check that AT = VEZTUT is an SVD of AT,

What is the benefit? If Ais m x n, then the SVD of A requires us
to orthogonally diagonalize an n x n matrix AT A. The SVD of AT
requires us to orthogonally diagonalize an m x m matrix
(AT)T(AT) = AAT. So if we are computing an SVD by hand we
might want to pick the smaller of the m and n.
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Classwork

Find an SVD for
32 2
A= [2 3 —2] ’
Let B=AT.

Note ATAis 3 x 3 and AAT is 2 x 2.
Also note that

17 8

Tp_ T _

B'B=AA _[ 817]'
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BT B has eigenvalues A\ = 25, \» = 9. So B has singular values 762~
o1 = 5,00 = 3. Now find eigenvectors of B” B corresponding to
the 2 eigenvalues. We get x; = [11]7 and xo = [~11]7. Now we

obtain
t Vv V2 -1/V2
_[V1V2]— 1/\/5 1/\/5

So now we have V and & (for B = AT remember) and it remains

to find U.
Note that r = 2 and {Bvy, Bv,} is an orthogonal basis for ColB.
We have
5/V2 ~1/V2
Bvi= |5/V2|, Bwa=| 1/V2
0 —4/y/2

and u; = (Bvy)/o1,ux = (Bvg)/0>.



Classwork solutions

BT B has eigenvalues A\ = 25, \» = 9. So B has singular values 762~
o1 = 5,00 = 3. Now find eigenvectors of B” B corresponding to
the 2 eigenvalues. We get x; = [11]7 and xo = [~11]7. Now we

obtain
t Vv V2 -1/V2
_[V1V2]— 1/\/5 1/\/5

So now we have V and & (for B = AT remember) and it remains

to find U.
Note that r = 2 and {Bvy, Bv,} is an orthogonal basis for ColB.
We have
5/V2 ~1/V2
Bvi= |5/V2|, Bwa=| 1/V2
0 —4/y/2

and u; = (Bvy)/o1,uy = (Bva)/o2. How do we get u3?
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We need to extend {u,us} to an orthonormal basis of R3. First
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Now use Gram-Schmidt. We get
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We need to extend {u,us} to an orthonormal basis of R3. First
find a vector that isn't in the span of {u;,us}. e3 € R® works.
Now use Gram-Schmidt. We get

~2/9

_ €3 - up €3 - U B
X =e3 — u; — Uy = 2/9
u; - up uz - us 1/9

Then us = x/ ||x|| = [-2/32/31/3]. So what is the conclusion?
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AT = uzv’T

L/v2 -1/(38v2) =2/3| [50] r 5./ 1
=|1/vV/2 1/(3vV2) 2/3| |03 [ V2l ]
{ 0 —4/(3v2) 1/3] L 0] —1V21/v2
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AT = uzv’T

1/v2 —-1/(3v2) =2/3] [5 0 LB 13
=|1/v2 1/(3vV2) 2/3| |03 l V21 ]
{ 0 —4/(3v2) 1/3] L 0] “1V21/v2
A=vrTu’
_ ll/x/i —1/x/§] lsoo] { L/v2  1/V2 0]

= ~1/(3v2) 1/(3v2) ~4/(3v2)
/v2 1/v2|[030 —2/3  2/3 1/3
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Constrained optimization

Consider the map T : R” — R™ defined by an m x n matrix A.
What is the maximum of ||Ax|| subject to the constraint that

I|| = 1?7 It turns out (see §7.3) that the maximum of ||Ax|| is o1
the largest singular value of A, and ||Avy]|| = [|o1vi]| = o1.

SVD allows us to find an explicit vector x in the domain of T
(subject to the constraint) so that ||Ax|| is as large as possible.

Also, this might be the right time to take a look at
https://goo.gl/oiFXd8.


https://goo.gl/oiFXd8

SVD spectral-like decomposition




SVD spectral-like decomposition

Let A= UZVT be an SVD of A (with rank r).



SVD spectral-like decomposition

Let A= UZVT be an SVD of A (with rank r).

A=UzVvT
v
:[o’lul...o-ruro...()]
VT
n

= alulvlT +---+ a,u,vrT



SVD spectral-like decomposition

Let A= UZVT be an SVD of A (with rank r).

A=UzVvT
v
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VT
n
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SVD spectral-like decomposition

Let A= UZVT be an SVD of A (with rank r).

A=UzVvT
v
:[01U1"'0rur0~--0]
v,

T T
=0o1umvy + -+ orupv,

Each term in this sum is an m x n matrix of rank 1. Decomposing
A into a sum of rank 1 matrices (ordered by the singular values) is
the starting point for applications involving low rank
approximations of A.



