Lecture 28

Math 22 Summer 2017
August 21, 2017

Just for today

- SVD and applications

§7.4 Proof of Theorem 10

§7.4 Proof of Theorem 10

First we compute AV:

§7.4 Proof of Theorem 10

First we compute $A V$:

$$
\left.\begin{array}{rl}
A V & =\left[\begin{array}{lll}
A \mathbf{v}_{1} \cdots & \cdots \mathbf{v}_{n}
\end{array}\right] \\
& =\left[A \mathbf{v}_{1} \cdots A\right.
\end{array}\right] \mathbf{v}_{r} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]\left[\begin{array}{llll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}]
\end{array}\right.
$$

§7.4 Proof of Theorem 10

First we compute $A V$:

$$
\begin{aligned}
A V & =\left[\begin{array}{lll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{r} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\sigma_{1} \mathbf{u}_{1} & \cdots & \sigma_{r} \mathbf{u}_{r} \underbrace{0 \cdots \mathbf{0}}_{n-r}
\end{array}\right]
\end{aligned}
$$

Now compute $U \Sigma$:

§7.4 Proof of Theorem 10

First we compute AV:

$$
\begin{aligned}
A V & =\left[\begin{array}{lll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right] \\
& =\left[A \mathbf{v}_{1} \cdots A\right. \\
\cdots & \mathbf{v}_{r} \underbrace{0 \cdots \mathbf{0}}_{n-r}] \\
& =\left[\begin{array}{lll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \underbrace{0 \cdots \mathbf{0}}_{n-r}
\end{array}\right]
\end{aligned}
$$

Now compute $U \Sigma$:

$$
U \Sigma=\left[\begin{array}{llll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{m}
\end{array}\right]\left[\begin{array}{ccc|c}
\sigma_{1} & & & \\
& \ddots & & 0 \\
& & \sigma_{r} & 0
\end{array}\right]=\left[\begin{array}{lllll}
\sigma_{1} \mathbf{u}_{1} & \cdots & \sigma_{r} \mathbf{u}_{r} \underbrace{}_{n-r} & \cdots & \\
\mathbf{0} \cdots \mathbf{0}
\end{array}\right]
$$

§7.4 Proof of Theorem 10

First we compute AV:

$$
\begin{aligned}
A V & =\left[\begin{array}{lll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{r} & \underbrace{0 \cdots \mathbf{0}}_{n-r}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\sigma_{1} \mathbf{u}_{1} & \cdots & \sigma_{r} \mathbf{u}_{r} & \underbrace{0 \cdots \mathbf{0}}_{n-r}
\end{array}\right]
\end{aligned}
$$

Now compute $U \Sigma$:

$$
U \Sigma=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{m}
\end{array}\right]\left[\begin{array}{ccc|c}
\sigma_{1} & & & \\
& \ddots & & 0 \\
& & \sigma_{r} & \\
& & & \\
\boldsymbol{\aleph}^{c}
\end{array}\right]=\left[\begin{array}{llll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n-r}
\end{array}\right]
$$

Thus

$$
U \Sigma V^{T}=(U \Sigma) V^{T}=(A V) V^{T}=A\left(V V^{T}\right)=A I_{n}=A
$$

§7.4 SVD Example ${ }^{\text {梅 }}$

§7.4 SVD Example 揩

$$
\text { Let } A=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]
$$

§7.4 SVD Example 揩

$$
\text { Let } A=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right] \text { Then } A^{T} A=\left[\begin{array}{ll}
74 & 32 \\
32 & 26
\end{array}\right]
$$

§7.4 SVD Example 捛

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric.

§7.4 SVD Example 猡'

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values?

§7.4 SVD Example 捛

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$.

§7.4 SVD Example 猡'

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$. Thus

$$
\Sigma=\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

§7.4 SVD Example 揩

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$. Thus

$$
\Sigma=\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

How do we find V ?

§7.4 SVD Example 祉

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$. Thus

$$
\Sigma=\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

How do we find V ? The columns of V are normalized eigenvectors of $A^{T} A$.

§7.4 SVD Example 祉

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$. Thus

$$
\Sigma=\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

How do we find V ? The columns of V are normalized eigenvectors of $A^{T} A$. A basis for $\operatorname{Nul}\left(A^{T} A-90 I_{2}\right)$ is $\left\{[21]^{T}\right\}$.

§7.4 SVD Example 棏

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$. Thus

$$
\Sigma=\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

How do we find V ? The columns of V are normalized eigenvectors of $A^{T} A$. A basis for $\operatorname{Nul}\left(A^{T} A-90 I_{2}\right)$ is $\left\{[21]^{T}\right\}$. A basis for $\operatorname{Nul}\left(A^{T} A-10 I_{2}\right)$ is $\left\{\left[\begin{array}{ll}-1 & 2\end{array}\right]^{T}\right\}$.

§7.4 SVD Example 祉

Let $A=\left[\begin{array}{ll}7 & 1 \\ 5 & 5 \\ 0 & 0\end{array}\right]$ Then $A^{T} A=\left[\begin{array}{ll}74 & 32 \\ 32 & 26\end{array}\right]$ Looks symmetric. The charpoly of $A^{T} A$ is $(\lambda-90)(\lambda-10)$, so what are the singular values? $\sigma_{1}=\sqrt{90}, \sigma_{2}=\sqrt{10}$. Thus

$$
\Sigma=\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

How do we find V ? The columns of V are normalized eigenvectors of $A^{T} A$. A basis for $\operatorname{Nul}\left(A^{T} A-90 I_{2}\right)$ is $\left\{[21]^{T}\right\}$. A basis for $\operatorname{Nul}\left(A^{T} A-10 I_{2}\right)$ is $\left\{\left[\begin{array}{ll}-1 & 2\end{array}\right]^{T}\right\}$. Normalizing we get that

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]
$$

§7.4 Example 路 continued

§7.4 Example 蛖continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$.

§7.4 Example 㡡continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$.

§7.4 Example 鄙 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

§7.4 Example 鄙 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a basis for \mathbb{R}^{3} ?

§7.4 Example 鄙 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a basis for \mathbb{R}^{3} ? No!

§7.4 Example 鄙 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a basis for \mathbb{R}^{3} ? No! We need to extend it to a basis of \mathbb{R}^{3}.

§7.4 Example 暗 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a basis for \mathbb{R}^{3} ? No! We need to extend it to a basis of \mathbb{R}^{3}. So what is \mathbf{u}_{3} ?

§7.4 Example 鄙 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Rightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a basis for \mathbb{R}^{3} ? No! We need to extend it to a basis of \mathbb{R}^{3}. So what is \mathbf{u}_{3} ? $\mathbf{u}_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$.

§7.4 Example 鄙 continued

We have $\Sigma_{3 \times 2}$ and $V_{2 \times 2}$. We need to compute $U_{3 \times 3}$. To do this we compute:

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
3 \sqrt{5} \\
3 \sqrt{5} \\
0
\end{array}\right] \Longrightarrow \mathbf{u}_{1}=\frac{A \mathbf{v}_{1}}{\left\|A \mathbf{v}_{1}\right\|}=\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{5} \\
\sqrt{5} \\
0
\end{array}\right] \Rightarrow \mathbf{u}_{2}=\frac{A \mathbf{v}_{2}}{\left\|A \mathbf{v}_{2}\right\|}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ a basis for \mathbb{R}^{3} ? No! We need to extend it to a basis of \mathbb{R}^{3}. So what is \mathbf{u}_{3} ? $\mathbf{u}_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$. Then $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$.

§7.4 Example 如桇 concluded

§7.4 Example 球concluded

We can now verify that our singular value decomposition of A works:

§7.4 Example 䋈 concluded

We can now verify that our singular value decomposition of A works:

$$
\underbrace{\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]}_{A_{3 \times 2}}=\underbrace{\left[\begin{array}{rrr}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]}_{U_{3 \times 3}} \underbrace{\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]}_{\Sigma_{3 \times 2}} \underbrace{\left[\begin{array}{rr}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]^{T}}_{V_{2 \times 2}^{T}}
$$

§7.4 Example 如桇 concluded

We can now verify that our singular value decomposition of A works:

$$
\underbrace{\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]}_{A_{3 \times 2}}=\underbrace{\left[\begin{array}{rrr}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]}_{U_{3 \times 3}} \underbrace{\left[\begin{array}{rr}
\sqrt{90} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]}_{\Sigma_{3 \times 2}} \underbrace{\left[\begin{array}{rr}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]^{T}}_{V_{2 \times 2}^{T}}
$$

For some small 2×2 examples you might want to take a look at https://goo.gl/oiFXd8

§7.4 SVD and fundamental spaces

§7.4 SVD and fundamental spaces

Recall $(\text { Row } A)^{\perp}=\operatorname{Nul} A$

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r,

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r, and consider the SVD:

§7.4 SVD and fundamental spaces

Recall $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r, and consider the SVD:

$$
\left[\begin{array}{lllllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \cdots & \mathbf{u}_{m}
\end{array}\right]\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \ddots & & 0 \\
& & \sigma_{r} & \\
\hline & & 0 & \\
& \odot
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T} \\
\mathbf{v}_{r+1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r, and consider the SVD:

$$
\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \ldots & \mathbf{u}_{m}
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \ddots & & 0 \\
& & & \\
& & & \\
\hline
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\\
\\
\\
\\
\\
\\
\mathbf{v}_{r}^{T} \\
\mathbf{v}_{r+1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

- $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ is an orthonormal basis of $\operatorname{Col} A$.

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r, and consider the SVD:

$$
\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \ldots & \mathbf{u}_{m}
\end{array}\right]\left[\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T} \\
\mathbf{v}_{r+1}^{T} \\
\vdots \\
\\
\\
\\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

- $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ is an orthonormal basis of $\operatorname{Col} A$.
- $\left\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis of $(\operatorname{Col} A)^{\perp}$.

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r, and consider the SVD:

$$
\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \ldots & \mathbf{u}_{m}
\end{array}\right]\left[\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T} \\
\mathbf{v}_{r+1}^{T} \\
\vdots \\
\\
\\
\\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

- $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ is an orthonormal basis of $\operatorname{Col} A$.
- $\left\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis of $(\operatorname{Col} A)^{\perp}$.
- $\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of $\operatorname{Nul} A$.

§7.4 SVD and fundamental spaces

Recall (Row $A)^{\perp}=\operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Let A have rank r, and consider the SVD:

$$
\left[\begin{array}{lllllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \ldots & \mathbf{u}_{m}
\end{array}\right]\left[\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T} \\
\mathbf{v}_{r+1}^{T} \\
\vdots \\
\\
\\
\\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

- $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ is an orthonormal basis of $\operatorname{Col} A$.
- $\left\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis of $(\operatorname{Col} A)^{\perp}$.
- $\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of $\operatorname{Nul} A$.
$-\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is an orthonormal basis of $(\mathrm{Nul} A)^{\perp}$.

A or $A^{T} ?$

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A.

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A. We can use this to find an SVD of A^{T}.

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A. We can use this to find an SVD of A^{T}. Check that $A^{T}=V \Sigma^{T} U^{T}$ is an SVD of A^{T}.

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A. We can use this to find an SVD of A^{T}. Check that $A^{T}=V \Sigma^{T} U^{T}$ is an SVD of A^{T}.

What is the benefit?

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A. We can use this to find an SVD of A^{T}. Check that $A^{T}=V \Sigma^{T} U^{T}$ is an SVD of A^{T}.

What is the benefit? If A is $m \times n$, then the SVD of A requires us to orthogonally diagonalize an $n \times n$ matrix $A^{T} A$.

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A. We can use this to find an SVD of A^{T}. Check that $A^{T}=V \Sigma^{T} U^{T}$ is an SVD of A^{T}.

What is the benefit? If A is $m \times n$, then the SVD of A requires us to orthogonally diagonalize an $n \times n$ matrix $A^{T} A$. The SVD of A^{T} requires us to orthogonally diagonalize an $m \times m$ matrix $\left(A^{T}\right)^{T}\left(A^{T}\right)=A A^{T}$.

A or $A^{T} ?$

Suppose $A=U \Sigma V^{T}$ is an SVD of A. We can use this to find an SVD of A^{T}. Check that $A^{T}=V \Sigma^{T} U^{T}$ is an SVD of A^{T}.

What is the benefit? If A is $m \times n$, then the SVD of A requires us to orthogonally diagonalize an $n \times n$ matrix $A^{T} A$. The SVD of A^{T} requires us to orthogonally diagonalize an $m \times m$ matrix $\left(A^{T}\right)^{T}\left(A^{T}\right)=A A^{T}$. So if we are computing an SVD by hand we might want to pick the smaller of the m and n.

Classwork

Find an SVD for

$$
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right] .
$$

Classwork

Find an SVD for

$$
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right] .
$$

Let $B=A^{T}$.
Note $A^{T} A$ is 3×3 and $A A^{T}$ is 2×2.
Also note that

$$
B^{T} B=A A^{T}=\left[\begin{array}{rr}
17 & 8 \\
8 & 17
\end{array}\right]
$$

Classwork solutions

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

So now we have V and Σ (for $B=A^{T}$ remember)

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

So now we have V and Σ (for $B=A^{T}$ remember) and it remains to find U.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

So now we have V and Σ (for $B=A^{T}$ remember) and it remains to find U.

Note that $r=2$ and $\left\{B \mathbf{v}_{1}, B \mathbf{v}_{2}\right\}$ is an orthogonal basis for $\operatorname{Col} B$.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

So now we have V and Σ (for $B=A^{T}$ remember) and it remains to find U.

Note that $r=2$ and $\left\{B \mathbf{v}_{1}, B \mathbf{v}_{2}\right\}$ is an orthogonal basis for $\operatorname{Col} B$. We have

$$
B \mathbf{v}_{1}=\left[\begin{array}{r}
5 / \sqrt{2} \\
5 / \sqrt{2} \\
0
\end{array}\right], \quad B \mathbf{v}_{2}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
-4 / \sqrt{2}
\end{array}\right]
$$

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

So now we have V and Σ (for $B=A^{T}$ remember) and it remains to find U.

Note that $r=2$ and $\left\{B \mathbf{v}_{1}, B \mathbf{v}_{2}\right\}$ is an orthogonal basis for $\operatorname{Col} B$. We have

$$
B \mathbf{v}_{1}=\left[\begin{array}{r}
5 / \sqrt{2} \\
5 / \sqrt{2} \\
0
\end{array}\right], \quad B \mathbf{v}_{2}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
-4 / \sqrt{2}
\end{array}\right]
$$

and $\mathbf{u}_{1}=\left(B \mathbf{v}_{1}\right) / \sigma_{1}, \mathbf{u}_{2}=\left(B \mathbf{v}_{2}\right) / \sigma_{2}$.

Classwork solutions

$B^{T} B$ has eigenvalues $\lambda_{1}=25, \lambda_{2}=9$. So B has singular values $\sigma_{1}=5, \sigma_{2}=3$. Now find eigenvectors of $B^{T} B$ corresponding to the 2 eigenvalues. We get $\mathbf{x}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{x}_{2}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Now we obtain

$$
V=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

So now we have V and Σ (for $B=A^{T}$ remember) and it remains to find U.

Note that $r=2$ and $\left\{B \mathbf{v}_{1}, B \mathbf{v}_{2}\right\}$ is an orthogonal basis for $\operatorname{Col} B$. We have

$$
B \mathbf{v}_{1}=\left[\begin{array}{r}
5 / \sqrt{2} \\
5 / \sqrt{2} \\
0
\end{array}\right], \quad B \mathbf{v}_{2}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
-4 / \sqrt{2}
\end{array}\right]
$$

and $\mathbf{u}_{1}=\left(B \mathbf{v}_{1}\right) / \sigma_{1}, \mathbf{u}_{2}=\left(B \mathbf{v}_{2}\right) / \sigma_{2}$. How do we get \mathbf{u}_{3} ?

Classwork solutions continued

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}.

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. First find a vector that isn't in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. First find a vector that isn't in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. $\mathbf{e}_{3} \in \mathbb{R}^{3}$ works.

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. First find a vector that isn't in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. $\mathbf{e}_{3} \in \mathbb{R}^{3}$ works. Now use Gram-Schmidt.

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. First find a vector that isn't in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. $\mathbf{e}_{3} \in \mathbb{R}^{3}$ works. Now use Gram-Schmidt. We get

$$
\mathbf{x}=\mathbf{e}_{3}-\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{r}
-2 / 9 \\
2 / 9 \\
1 / 9
\end{array}\right]
$$

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. First find a vector that isn't in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. $\mathbf{e}_{3} \in \mathbb{R}^{3}$ works. Now use Gram-Schmidt. We get

$$
\mathbf{x}=\mathbf{e}_{3}-\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{r}
-2 / 9 \\
2 / 9 \\
1 / 9
\end{array}\right]
$$

Then $\mathbf{u}_{3}=\mathbf{x} /\|\mathbf{x}\|=\left[\begin{array}{ll}-2 / 3 & 2 / 31 / 3\end{array}\right]^{T}$.

Classwork solutions continued

We need to extend $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. First find a vector that isn't in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\} . \mathbf{e}_{3} \in \mathbb{R}^{3}$ works. Now use Gram-Schmidt. We get

$$
\mathbf{x}=\mathbf{e}_{3}-\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{e}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{r}
-2 / 9 \\
2 / 9 \\
1 / 9
\end{array}\right]
$$

Then $\mathbf{u}_{3}=\mathbf{x} /\|\mathbf{x}\|=[-2 / 32 / 31 / 3]^{T}$. So what is the conclusion?

Classwork solutions concluded

Classwork solutions concluded

$$
\begin{aligned}
A^{T} & =U \Sigma V^{T} \\
& =\left[\begin{array}{rrr}
1 / \sqrt{2} & -1 /(3 \sqrt{2}) & -2 / 3 \\
1 / \sqrt{2} & 1 /(3 \sqrt{2}) & 2 / 3 \\
0 & -4 /(3 \sqrt{2}) & 1 / 3
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

Classwork solutions concluded

$$
\begin{aligned}
A^{T} & =U \Sigma V^{T} \\
& =\left[\begin{array}{rrr}
1 / \sqrt{2} & -1 /(3 \sqrt{2}) & -2 / 3 \\
1 / \sqrt{2} & 1 /(3 \sqrt{2}) & 2 / 3 \\
0 & -4 /(3 \sqrt{2}) & 1 / 3
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

$$
A=V \Sigma^{T} U^{T}
$$

$$
=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 /(3 \sqrt{2}) & 1 /(3 \sqrt{2}) & -4 /(3 \sqrt{2}) \\
-2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]
$$

Constrained optimization

Constrained optimization

Consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by an $m \times n$ matrix A.

Constrained optimization

Consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by an $m \times n$ matrix A. What is the maximum of $\|A \mathbf{x}\|$ subject to the constraint that $\|\mathbf{x}\|=1$?

Constrained optimization

Consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by an $m \times n$ matrix A. What is the maximum of $\|A \mathbf{x}\|$ subject to the constraint that $\|\mathbf{x}\|=1$? It turns out (see $\S 7.3$) that the maximum of $\|A \mathbf{x}\|$ is σ_{1} the largest singular value of A,

Constrained optimization

Consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by an $m \times n$ matrix A. What is the maximum of $\|A \mathbf{x}\|$ subject to the constraint that $\|\mathbf{x}\|=1$? It turns out (see $\S 7.3$) that the maximum of $\|A \mathbf{x}\|$ is σ_{1} the largest singular value of A, and $\left\|A \mathbf{v}_{1}\right\|=\left\|\sigma_{1} \mathbf{v}_{1}\right\|=\sigma_{1}$.

Constrained optimization

Consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by an $m \times n$ matrix A. What is the maximum of $\|A \mathbf{x}\|$ subject to the constraint that $\|\mathbf{x}\|=1$? It turns out (see $\S 7.3$) that the maximum of $\|A \mathbf{x}\|$ is σ_{1} the largest singular value of A, and $\left\|A \mathbf{v}_{1}\right\|=\left\|\sigma_{1} \mathbf{v}_{1}\right\|=\sigma_{1}$.
SVD allows us to find an explicit vector \mathbf{x} in the domain of T (subject to the constraint) so that $\|A \mathbf{x}\|$ is as large as possible.

Constrained optimization

Consider the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by an $m \times n$ matrix A. What is the maximum of $\|A \mathbf{x}\|$ subject to the constraint that $\|\mathbf{x}\|=1$? It turns out (see $\S 7.3$) that the maximum of $\|A \mathbf{x}\|$ is σ_{1} the largest singular value of A, and $\left\|A \mathbf{v}_{1}\right\|=\left\|\sigma_{1} \mathbf{v}_{1}\right\|=\sigma_{1}$.
SVD allows us to find an explicit vector \mathbf{x} in the domain of T (subject to the constraint) so that $\|A \mathbf{x}\|$ is as large as possible.

Also, this might be the right time to take a look at https://goo.gl/oiFXd8.

SVD spectral-like decomposition

SVD spectral-like decomposition

Let $A=U \Sigma V^{T}$ be an SVD of A (with rank r).

SVD spectral-like decomposition

Let $A=U \Sigma V^{T}$ be an SVD of A (with rank r).

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[\begin{array}{lllll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

SVD spectral-like decomposition

Let $A=U \Sigma V^{T}$ be an SVD of A (with rank r).

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[\begin{array}{llllll}
\sigma_{1} \mathbf{u}_{1} \cdots & \sigma_{r} \mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

Each term in this sum is an $m \times n$ matrix of rank 1 .

SVD spectral-like decomposition

Let $A=U \Sigma V^{\top}$ be an SVD of A (with rank r).

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[\sigma_{1} \mathbf{u}_{1} \cdots \sigma_{r} \mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

Each term in this sum is an $m \times n$ matrix of rank 1 . Decomposing A into a sum of rank 1 matrices (ordered by the singular values) is the starting point for applications involving low rank approximations of A.

