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Just for today

I SVD and applications



§7.4 Proof of Theorem 10

First we compute AV :

AV = [Av1 · · · Avn]
= [Av1 · · · Avr 0 · · · 0︸ ︷︷ ︸

n−r
]

= [σ1u1 · · · σr ur 0 · · · 0︸ ︷︷ ︸
n−r

]

Now compute UΣ:

UΣ = [u1 · · · um]


σ1

. . . 0
σr

0

 = [σ1u1 · · · σr ur 0 · · · 0︸ ︷︷ ︸
n−r

]

Thus

UΣV T = (UΣ)V T = (AV )V T = A(VV T ) = AIn = A.
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§7.4 SVD Example

Let A =

 7 1
5 5
0 0

 Then AT A =
[

74 32
32 26

]
Looks symmetric. The

charpoly of AT A is (λ− 90)(λ− 10), so what are the singular
values? σ1 =

√
90, σ2 =

√
10. Thus

Σ =


√

90 0
0
√

10
0 0

 .
How do we find V ? The columns of V are normalized eigenvectors
of AT A. A basis for Nul(AT A− 90I2) is {[2 1]T}. A basis for
Nul(AT A− 10I2) is {[−1 2]T}. Normalizing we get that

V = [v1 v2] =
[

2/
√

5 −1/
√

5
1/
√

5 2/
√

5

]
.
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§7.4 Example continued

We have Σ3×2 and V2×2. We need to compute U3×3. To do this
we compute:

Av1 =

 7 1
5 5
0 0

 [
2/
√

5
1/
√

5

]
=

 3
√

5
3
√

5
0

 =⇒ u1 = Av1
‖Av1‖

=

 1/
√

2
1/
√

2
0


Av2 =

 7 1
5 5
0 0

 [
−1/
√

5
2/
√

5

]
=

−
√

5√
5
0

 =⇒ u2 = Av2
‖Av2‖

=

−1/
√

2
1/
√

2
0


Is {u1,u2} a basis for R3? No! We need to extend it to a basis of
R3. So what is u3? u3 = [0 0 1]T . Then U = [u1 u2 u3].
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R3. So what is u3?

u3 = [0 0 1]T . Then U = [u1 u2 u3].
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§7.4 Example concluded

We can now verify that our singular value decomposition of A
works: 7 1

5 5
0 0


︸ ︷︷ ︸

A3×2

=

 1/
√

2 −1/
√

2 0
1/
√

2 1/
√

2 0
0 0 1


︸ ︷︷ ︸

U3×3


√

90 0
0
√

10
0 0


︸ ︷︷ ︸

Σ3×2

[
2/
√

5 −1/
√

5
1/
√

5 2/
√

5

]T

︸ ︷︷ ︸
V T

2×2

For some small 2× 2 examples you might want to take a look at
https://goo.gl/oiFXd8

https://goo.gl/oiFXd8
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§7.4 SVD and fundamental spaces

Recall (RowA)⊥ = NulA and (ColA)⊥ = Nul(AT ).

Let A have rank r , and consider the SVD:

[u1 · · · ur ur+1 . . . um]


σ1

. . . 0
σr

0





vT
1
...

vT
r

vT
r+1
...

vT
n



I {u1, . . . ,ur} is an orthonormal basis of ColA.
I {ur+1, . . . ,un} is an orthonormal basis of (ColA)⊥.
I {vr+1, . . . , vn} is an orthonormal basis of NulA.
I {v1, . . . , vr} is an orthonormal basis of (NulA)⊥.
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A or AT ?

Suppose A = UΣV T is an SVD of A. We can use this to find an
SVD of AT . Check that AT = V ΣT UT is an SVD of AT .

What is the benefit? If A is m × n, then the SVD of A requires us
to orthogonally diagonalize an n × n matrix AT A. The SVD of AT

requires us to orthogonally diagonalize an m ×m matrix
(AT )T (AT ) = AAT . So if we are computing an SVD by hand we
might want to pick the smaller of the m and n.
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Classwork

Find an SVD for
A =

[
3 2 2
2 3 −2

]
.

Let B = AT .
Note AT A is 3× 3 and AAT is 2× 2.
Also note that

BT B = AAT =
[

17 8
8 17

]
.



Classwork

Find an SVD for
A =

[
3 2 2
2 3 −2

]
.

Let B = AT .
Note AT A is 3× 3 and AAT is 2× 2.
Also note that

BT B = AAT =
[

17 8
8 17

]
.



Classwork solutions

BT B has eigenvalues λ1 = 25, λ2 = 9. So B has singular values
σ1 = 5, σ2 = 3. Now find eigenvectors of BT B corresponding to
the 2 eigenvalues. We get x1 = [1 1]T and x2 = [−1 1]T . Now we
obtain

V = [v1 v2] =
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
.

So now we have V and Σ (for B = AT remember) and it remains
to find U.

Note that r = 2 and {Bv1,Bv2} is an orthogonal basis for ColB.
We have

Bv1 =

 5/
√

2
5/
√

2
0

 , Bv2 =

−1/
√

2
1/
√

2
−4/
√

2


and u1 = (Bv1)/σ1,u2 = (Bv2)/σ2. How do we get u3?
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Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.
Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3.

First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.
Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}.

e3 ∈ R3 works.
Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.

Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.
Now use Gram-Schmidt.

We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.
Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .

Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.
Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T .

So what is the conclusion?



Classwork solutions continued

We need to extend {u1,u2} to an orthonormal basis of R3. First
find a vector that isn’t in the span of {u1,u2}. e3 ∈ R3 works.
Now use Gram-Schmidt. We get

x = e3 −
e3 · u1
u1 · u1

u1 −
e3 · u2
u2 · u2

u2 =

−2/9
2/9
1/9

 .
Then u3 = x/ ‖x‖ = [−2/3 2/3 1/3]T . So what is the conclusion?



Classwork solutions concluded

AT = UΣV T

=

 1/
√

2 −1/(3
√

2) −2/3
1/
√

2 1/(3
√

2) 2/3
0 −4/(3

√
2) 1/3


 5 0

0 3
0 0

 [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]

A = V ΣT UT

=
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

] [
5 0 0
0 3 0

]  1/
√

2 1/
√

2 0
−1/(3

√
2) 1/(3

√
2) −4/(3

√
2)

−2/3 2/3 1/3





Classwork solutions concluded

AT = UΣV T

=

 1/
√

2 −1/(3
√

2) −2/3
1/
√

2 1/(3
√

2) 2/3
0 −4/(3

√
2) 1/3


 5 0

0 3
0 0

 [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]

A = V ΣT UT

=
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

] [
5 0 0
0 3 0

]  1/
√

2 1/
√

2 0
−1/(3

√
2) 1/(3

√
2) −4/(3

√
2)

−2/3 2/3 1/3





Classwork solutions concluded

AT = UΣV T

=

 1/
√

2 −1/(3
√

2) −2/3
1/
√

2 1/(3
√

2) 2/3
0 −4/(3

√
2) 1/3


 5 0

0 3
0 0

 [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]

A = V ΣT UT

=
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

] [
5 0 0
0 3 0

]  1/
√

2 1/
√

2 0
−1/(3

√
2) 1/(3

√
2) −4/(3

√
2)

−2/3 2/3 1/3





Constrained optimization

Consider the map T : Rn → Rm defined by an m × n matrix A.
What is the maximum of ‖Ax‖ subject to the constraint that
‖x‖ = 1? It turns out (see §7.3) that the maximum of ‖Ax‖ is σ1
the largest singular value of A, and ‖Av1‖ = ‖σ1v1‖ = σ1.

SVD allows us to find an explicit vector x in the domain of T
(subject to the constraint) so that ‖Ax‖ is as large as possible.

Also, this might be the right time to take a look at
https://goo.gl/oiFXd8.
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SVD spectral-like decomposition

Let A = UΣV T be an SVD of A (with rank r).

A = UΣV T

= [σ1u1 · · · σr ur 0 · · · 0]

 vT
1
...

vT
n


= σ1u1vT

1 + · · ·+ σr ur vT
r

Each term in this sum is an m × n matrix of rank 1. Decomposing
A into a sum of rank 1 matrices (ordered by the singular values) is
the starting point for applications involving low rank
approximations of A.
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