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Just for today

> A bit on least-squares
» SVD
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Theorem %
Let A be an m x n matrix with linearly independent columns. Let

A = QR be a QR factorization of A. Then for every b € R™, The
equation Ax = b has a unique least-squares solution given by

£=R'Q"b.

Proof.

By the previous theorem, Ax = b has a unique least-squares
solution, so we just need to check that the given X works. But

A% = QR%
= QRR1Q"b
= QQ"b =b.
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§6.5 Example s continued

Using the previously computed @ and R, we verify the theorem in
this example as follows.

£$=R Qb
) 1
[-1/6 —1/42 1714 5/42] |2
~ | 7/6 8/21 —1/7 —17/42] |3
3
~[5/14
| 27|

Note that this also shows the unilluminating fact that
(ATA)LAT = R71QT when defined.
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Consider the quantitative data (2,1),(5,2),(7,3),(8,3) in the
(t,y)-plane. How do we find a line y = ct + d that “best fits” this
data? Well, to do this we need a notion of error. One might
measure this error using “squared residuals”. Draw a picture. In
our case, this error is given by

Z(y, cti—d)? = (1-2c—d)*+(2—5¢c—d)*+(3—7c—d)*+(3—8c—3)>.
21 1
51 2 c

If we let A= N b= E x-ld],thentheabove
81 3

error for a given x is precisely ||b — Ax||?. This quantity is
minimized precisely when you guessed it x is a least-squares
solution to Ax = b. % = [5/14 2/7]T.
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y
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Definition

Let A be an m x n matrix. We say that A is symmetric if AT = A.
We say that A is orthogonally diagonalizable if A= PDP~! and
the columns of P are an orthonormal basis (of eigenvectors).

Note that if A is orthogonally diagonalizable, then A is symmetric.
What's the proof? P is an orthogonal matrix.

Surprisingly the converse is also true! Emma will speak about this
(§7.1 Spectral Theorem) in x-hour on Tuesday.
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Let's see an example of the nontrivial direction.

4311
3411
Let A= 1143 . Then
1134
1000
_,lo0100] o7
A=Plooso|F
0009
with
~1/v/2 0-1/21/2
p 1/V2 0-1/21/2

0-1/vV2 1/21)2
0 1/vV2 1/21)2
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Let A be an m x n matrix. How do we use results about symmetric
matrices when A need not even be square? Let B= AT A. Then B
is nx n and

BT =(ATA)T = ATATT = ATA=B.
So B is symmetric and therefore orthogonally diagonalizable.

What does this tell us about A?
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Again, how do we know such a basis exists? Spectral Theorem
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Note that for each v; we have

14| = (Av)) - (Av))
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Thus every \; > 0 (why?).
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Thus, we can order the eigenvalues of AT A as
A1>X 2> >N >0,

We define the singular values of A to be g; := /\;
where {);} are the eigenvalues of AT A as above. Note that
o; = ||Avj|| by our previous computation, so we have that

Moreover, we can write

01y,--+y0r,0r41y---,0n.

>0 all zero

The index r above turns out to be the rank of the matrix A.
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Let A be an m x n matrix. Then the rank of A is equal to the
number of strictly positive singular values of A (i.e. r from the
previous slide).

Proof.

We have {vi,...,v,} an orthonormal basis of R" consisting of
eigenvectors of AT A. Again, this is a black box. We want to know
about the rank of A which is the dimension of the column space of
A which is equal to Span{Avi,...,Av,}. But
Span{Avy,...,Av,} = Span{Avy, ..., Av,}. Remember,

o; = ||Av;||. This tells us that the rank of Ais <r.

It remains to show {Avy, ..., Av,} is linearly independent. To do
this we show the vectors are orthogonal: (Av;) - (Av;) =
(AV,')T(AV_,') = VI-TATAV_,' = V,-T>\_,'Vj = )\j(V,‘ . Vj) =0. L]
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Definition %
The singular value decomposition (SVD) of an m x n matrix A is
A=UzVT

where U is an m x m orthogonal matrix, V is an n x n orthogonal
matrix whose columns consist of eigenvectors of AT A, and X is an

g - <« _|DO
m x n “diagonalish” matrix: ¥ = l 0 0{]

where D is the r x r matrix

o1 0
D =

0 o,

and @ is the (m — r) x (n — r) matrix of zeros.
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§7.4 Singular value decomposition

Note that U and V are orthogonal matrices. The columns of U are
called the left singular vectors of A. The columns of V are called
the right singular vectors of A.

Also note that the U and V are not uniquely determined, but the
singular values are unique.

We have already discussed how to find V. Next we will show how
we get U, and then we will prove that the story checks out!
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Consider {Avy, ..., Av,}. What do we know about this set? 782
It is an orthogonal basis for ColA C R™.

Let
U= AV,' _ AV,‘
A
Then {uy,...,u,} is an orthonormal basis for ColA. But U is an

m x m matrix and we might have m > r. So what do we do?
Extend the basis {uy,...,u,} of ColA to a basis of R™. Call it
{u1,...,up}. Then finally we get U = [u1 --- up).

Theorem

Let A be an m x n matrix with rank r. Then A= ULV (with U,

Y, V defined above) is a singular value decomposition of A.

Let's prove that this all checks out.
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First we compute AV:

AV = [Avy - Av,]
:[Avl Avr 0--. 0]
—r
=[owy -+ opu, 0 - 0]

Now compute UZ:

U =[u; - up]

Thus

UV = (UD)VT = (AV)VT = AWT) = Al, = A
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T 74 32 —
Let A= |55 | Then ATA= Looks symmetric. The
00 32 26

charpoly of AT A'is (A — 90)(\ — 10), so what are the singular
values? o1 = v/90, o = v/10. Thus

VOO 0
Y = 0410 .
0 0

How do we find V? The columns of V are normalized eigenvectors
of ATA. A basis for Nul(ATA —90h) is {[21]"}. A basis for
Nul(ATA —10h) is {[~12]7}. Normalizing we get that

V= _12/VB-1/V5
_[V1V2]— 1/\/5 2/\/5
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We have 2342 and Voyo. We need to compute Usx3. To do this

we compute:

71

2/\/51
Avi = [ 55 =

1 00 [1/\/3

71

_ —wﬁl _
Avo, = |55 =

i 00 l 2/\/3

Is {ug,uy} a basis for R3? No!

V5
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1)y
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0
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We have 2342 and Voyo. We need to compute Usx3. To do this
we compute:

71 3v/5 | [1/v2
2/\/5] Avy
Avi = |55 =3V = u= = [1/V2
" oo [1/*/3 0| o Al _/ 0
71 —/5 | [—1/v2
. —1/\/3 . . AV2 .
M P l 2/x/3]_ Vol T e | V2

Is {u1,us} a basis for R3? No! We need to extend it to a basis of
R3. So what is uz? uz3 =[001]7. Then U = [u; us u3].
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works:
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0
00 0 01 0 0 1/\/5 2/\/5
N—— v
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We will conclude this course by explaining some of the applications
of SVD. So stay tuned.

For some practice with small 2 x 2 examples you might want to
take a look at https://goo.gl/o0iFXd8
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