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Just for today

I A bit on least-squares
I SVD



§6.5 Theorem 15

Theorem
Let A be an m × n matrix with linearly independent columns. Let
A = QR be a QR factorization of A. Then for every b ∈ Rm, The
equation Ax = b has a unique least-squares solution given by

x̂ = R−1QT b.

Proof.
By the previous theorem, Ax = b has a unique least-squares
solution, so we just need to check that the given x̂ works. But

Ax̂ = QR x̂
= QRR−1QT b
= QQT b = b̂.
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§6.5 Example K continued

Using the previously computed Q and R, we verify the theorem in
this example as follows.

x̂ = R−1QT b

=
[
−1/6 −1/42 1/14 5/42

7/6 8/21 −1/7 −17/42

] 
1
2
3
3


=

[
5/14

2/7

]
.

Note that this also shows the unilluminating fact that
(AT A)−1AT = R−1QT when defined.
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§6.5 Example K concluded

Consider the quantitative data (2, 1), (5, 2), (7, 3), (8, 3) in the
(t, y)-plane. How do we find a line y = ct + d that “best fits” this
data? Well, to do this we need a notion of error. One might
measure this error using “squared residuals”. Draw a picture. In
our case, this error is given by

4∑
i=1

(yi−cti−d)2 = (1−2c−d)2+(2−5c−d)2+(3−7c−d)2+(3−8c−3)2.

If we let A =


2 1
5 1
7 1
8 1

 , b =


1
2
3
3

 , x =
[

c
d

]
, then the above

error for a given x is precisely ‖b− Ax‖2. This quantity is
minimized precisely when you guessed it x is a least-squares
solution to Ax = b. x̂ = [5/14 2/7]T .
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the line y = (5/14)t + (2/7)
that best fits
the data (2,1),(5,2),(7,3),(8,3) :

t

y



§6.5 Example K concluded

From the least-squares solution we obtain

the line y = (5/14)t + (2/7)
that best fits
the data (2,1),(5,2),(7,3),(8,3) :

t

y



§6.5 Example K concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)

that best fits
the data (2,1),(5,2),(7,3),(8,3) :

t

y



§6.5 Example K concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)
that best fits

the data (2,1),(5,2),(7,3),(8,3) :

t

y



§6.5 Example K concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)
that best fits
the data (2,1),(5,2),(7,3),(8,3) :

t

y



§6.5 Example K concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)
that best fits
the data (2,1),(5,2),(7,3),(8,3) :

t

y



SVD Preliminaries

Definition
Let A be an m× n matrix. We say that A is symmetric if AT = A.
We say that A is orthogonally diagonalizable if A = PDP−1 and
the columns of P are an orthonormal basis (of eigenvectors).

Note that if A is orthogonally diagonalizable, then A is symmetric.
What’s the proof? P is an orthogonal matrix.

Surprisingly the converse is also true! Emma will speak about this
(§7.1 Spectral Theorem) in x-hour on Tuesday.
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SVD Preliminaries
Let’s see an example of the nontrivial direction.

Let A =


4 3 1 1
3 4 1 1
1 1 4 3
1 1 3 4

 . Then

A = P


1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 9

 PT

with

P =


−1/
√

2 0 −1/2 1/2
1/
√

2 0 −1/2 1/2
0 −1/

√
2 1/2 1/2

0 1/
√

2 1/2 1/2

 .
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SVD Preliminaries

Let A be an m× n matrix. How do we use results about symmetric
matrices when A need not even be square? Let B = AT A. Then B
is n × n and

BT = (AT A)T = AT ATT = AT A = B.

So B is symmetric and therefore orthogonally diagonalizable.
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Let {v1, . . . , vn} be an orthonormal basis of Rn consisting of
eigenvectors of B := AT A with eigenvalues λ1, . . . , λn.

Again, how do we know such a basis exists? Spectral Theorem
(which we didn’t prove... or even state explicitly . But Emma
will talk about this in the x-hour ©).

Note that for each vi we have

‖Avi‖2 = (Avi ) · (Avi )
= (Avi )T (Avi )
= vT

i AT Avi

= vT
i Bvi

= vT
i λivi

= λi (vi · vi ) = λi

Thus every λi ≥ 0 (why?).
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Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above.

Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation,

so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



SVD Preliminaries

Thus, we can order the eigenvalues of AT A as

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We define the singular values of A to be σi :=
√
λi

where {λi} are the eigenvalues of AT A as above. Note that
σi = ‖Avi‖ by our previous computation, so we have that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Moreover, we can write

σ1, . . . , σr︸ ︷︷ ︸
>0

, σr+1, . . . , σn︸ ︷︷ ︸
all zero

.

The index r above turns out to be the rank of the matrix A.



§7.4 Theorem 9

Theorem
Let A be an m × n matrix. Then the rank of A is equal to the
number of strictly positive singular values of A (i.e. r from the
previous slide).

Proof.
We have {v1, . . . , vn} an orthonormal basis of Rn consisting of
eigenvectors of AT A. Again, this is a black box. We want to know
about the rank of A which is the dimension of the column space of
A which is equal to Span{Av1, . . . ,Avn}. But
Span{Av1, . . . ,Avn} = Span{Av1, . . . ,Avr}. Remember,
σi = ‖Avi‖. This tells us that the rank of A is ≤ r .

It remains to show {Av1, . . . ,Avr} is linearly independent. To do
this we show the vectors are orthogonal: (Avi ) · (Avj) =
(Avi )T (Avj) = vT

i AT Avj = vT
i λjvj = λj(vi · vj) = 0.
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§7.4 Singular value decomposition

Definition
The singular value decomposition (SVD) of an m× n matrix A is

A = UΣV T

where U is an m ×m orthogonal matrix, V is an n × n orthogonal
matrix whose columns consist of eigenvectors of AT A, and Σ is an

m × n “diagonalish” matrix: Σ =
[

D 0
0

]
where D is the r × r matrix

D =

 σ1 0
. . .

0 σr


and is the (m − r)× (n − r) matrix of zeros.
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§7.4 Singular value decomposition

Note that U and V are orthogonal matrices. The columns of U are
called the left singular vectors of A. The columns of V are called
the right singular vectors of A.

Also note that the U and V are not uniquely determined, but the
singular values are unique.

We have already discussed how to find V . Next we will show how
we get U, and then we will prove that the story checks out!
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§7.4 Theorem 10

Consider {Av1, . . . ,Avr}. What do we know about this set?
It is an orthogonal basis for ColA ⊆ Rm.

Let
ui := Avi

‖Avi‖
= Avi

σi
.

Then {u1, . . . ,ur} is an orthonormal basis for ColA. But U is an
m ×m matrix and we might have m > r . So what do we do?
Extend the basis {u1, . . . ,ur} of ColA to a basis of Rm. Call it
{u1, . . . ,um}. Then finally we get U = [u1 · · · um].

Theorem
Let A be an m × n matrix with rank r . Then A = UΣV T (with U,
Σ, V defined above) is a singular value decomposition of A.

Let’s prove that this all checks out.
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§7.4 Proof of Theorem 10

First we compute AV :

AV = [Av1 · · · Avn]
= [Av1 · · · Avr 0 · · · 0︸ ︷︷ ︸

n−r
]

= [σ1u1 · · · σr ur 0 · · · 0︸ ︷︷ ︸
n−r

]

Now compute UΣ:

UΣ = [u1 · · · um]


σ1

. . . 0
σr

0

 = [σ1u1 · · · σr ur 0 · · · 0︸ ︷︷ ︸
n−r

]

Thus

UΣV T = (UΣ)V T = (AV )V T = A(VV T ) = AIn = A.
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§7.4 SVD Example

Let A =

 7 1
5 5
0 0

 Then AT A =
[

74 32
32 26

]
Looks symmetric. The

charpoly of AT A is (λ− 90)(λ− 10), so what are the singular
values? σ1 =

√
90, σ2 =

√
10. Thus

Σ =


√

90 0
0
√

10
0 0

 .
How do we find V ? The columns of V are normalized eigenvectors
of AT A. A basis for Nul(AT A− 90I2) is {[2 1]T}. A basis for
Nul(AT A− 10I2) is {[−1 2]T}. Normalizing we get that

V = [v1 v2] =
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§7.4 Example continued

We have Σ3×2 and V2×2. We need to compute U3×3. To do this
we compute:

Av1 =

 7 1
5 5
0 0

 [
2/
√

5
1/
√

5

]
=

 3
√

5
3
√

5
0

 =⇒ u1 = Av1
‖Av1‖

=

 1/
√

2
1/
√

2
0


Av2 =

 7 1
5 5
0 0

 [
−1/
√

5
2/
√

5

]
=

−
√

5√
5
0

 =⇒ u2 = Av2
‖Av2‖

=

−1/
√

2
1/
√

2
0


Is {u1,u2} a basis for R3? No! We need to extend it to a basis of
R3. So what is u3? u3 = [0 0 1]T . Then U = [u1 u2 u3].
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§7.4 Example concluded

We can now verify that our singular value decomposition of A
works: 7 1

5 5
0 0


︸ ︷︷ ︸

A3×2

=

 1/
√

2 −1/
√

2 0
1/
√

2 1/
√

2 0
0 0 1


︸ ︷︷ ︸

U3×3


√

90 0
0
√

10
0 0


︸ ︷︷ ︸

Σ3×2

[
2/
√

5 −1/
√

5
1/
√

5 2/
√

5

]T

︸ ︷︷ ︸
V T

2×2

We will conclude this course by explaining some of the applications
of SVD. So stay tuned.

For some practice with small 2× 2 examples you might want to
take a look at https://goo.gl/oiFXd8

https://goo.gl/oiFXd8
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