Lecture 26

Math 22 Summer 2017
August 16, 2017

Just for today

- §6.4 Finish up
- §6.5 Least-squares problems

§6.4 Gram-Schmidt Review

§6.4 Gram-Schmidt Review

Consider a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a subspace $W \subseteq \mathbb{R}^{n}$.

§6.4 Gram-Schmidt Review

Consider a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a subspace $W \subseteq \mathbb{R}^{n}$. We saw that the Gram-Schmidt algorithm produces an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$

§6.4 Gram-Schmidt Review

Consider a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a subspace $W \subseteq \mathbb{R}^{n}$. We saw that the Gram-Schmidt algorithm produces an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ where $\mathbf{v}_{1}=\mathbf{x}_{1}$ and for $k \in\{2, \ldots, p\}$ we have

$$
\mathbf{v}_{k}=\mathbf{x}_{k}-\left(\sum_{i=1}^{k-1} \frac{\mathbf{x}_{k} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}\right) .
$$

§6.4 Gram-Schmidt Review

Consider a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a subspace $W \subseteq \mathbb{R}^{n}$. We saw that the Gram-Schmidt algorithm produces an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ where $\mathbf{v}_{1}=\mathbf{x}_{1}$ and for $k \in\{2, \ldots, p\}$ we have

$$
\mathbf{v}_{k}=\mathbf{x}_{k}-\left(\sum_{i=1}^{k-1} \frac{\mathbf{x}_{k} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}\right) .
$$

Moreover, $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ for every $k \in\{1, \ldots, p\}$.

§6.4 QR factorization review

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns.

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$.

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$. Let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$.

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$. Let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$. Since $\mathbf{x}_{k} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$,

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$. Let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$. Since $\mathbf{x}_{k} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we can write

$$
\mathbf{x}_{k}=r_{1 k} \mathbf{u}_{1}+\cdots+r_{k k} \mathbf{u}_{k}+0 \mathbf{u}_{k+1}+\cdots+0 \mathbf{u}_{n}=Q \mathbf{r}_{k}, \quad \mathbf{r}_{k}=\left[\begin{array}{c}
r_{k k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$. Let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$. Since $\mathbf{x}_{k} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we can write

Then $R:=\left[\mathbf{r}_{1} \cdots \mathbf{r}_{n}\right]$ is upper triangular

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$. Let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$. Since $\mathbf{x}_{k} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we can write

Then $R:=\left[\mathbf{r}_{1} \cdots \mathbf{r}_{n}\right]$ is upper triangular and

§6.4 QR factorization review

Let $A=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ be an $m \times n$ matrix with linearly independent columns. Via the Gram-Schmidt algorithm we can construct an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ for $\operatorname{Col} A$. Let $Q=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$. Since $\mathbf{x}_{k} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$, we can write

Then $R:=\left[\mathbf{r}_{1} \cdots \mathbf{r}_{n}\right]$ is upper triangular and $A=\left[\begin{array}{lll}\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}\end{array}\right]=\left[\begin{array}{lll}Q \mathbf{r}_{1} & \cdots & Q \mathbf{r}_{n}\end{array}\right]=Q R$. How do we guarantee that the diagonal of R is nonnegative?

§6.5 Least-squares solutions

§6.5 Least-squares solutions

Definition

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. Then $A \mathbf{x}=\hat{\mathbf{b}}$ is consistent,

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. Then $A \mathbf{x}=\hat{\mathbf{b}}$ is consistent, and any solution $\hat{\mathrm{x}}$ is a least-squares solution.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. Then $A \mathbf{x}=\hat{\mathbf{b}}$ is consistent, and any solution $\hat{\mathrm{x}}$ is a least-squares solution. Why?

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. Then $A \mathbf{x}=\hat{\mathbf{b}}$ is consistent, and any solution $\hat{\mathbf{x}}$ is a least-squares solution. Why? Best approximation theorem.

§6.5 Least-squares solutions

Definition

Let A be an $m \times n$ matrix. Let $\mathbf{b} \in \mathbb{R}^{n}$. A least-squares solution of the matrix equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\|A \hat{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
The least-squares error is $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (the distance between \mathbf{b} and $A \hat{\mathbf{x}}$).

We can obtain a least-squares solution via projection. Let $W=\operatorname{Col} A$. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. Then $A \mathbf{x}=\hat{\mathbf{b}}$ is consistent, and any solution $\hat{\mathbf{x}}$ is a least-squares solution. Why? Best approximation theorem.

Let's see how the details work.

§6.5 Example

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$.

§6.5 Example ©

$$
\text { Let } A=\left[\mathbf{a}_{1} \mathbf{a}_{2}\right]=\left[\begin{array}{ll}
2 & 1 \\
5 & 1 \\
7 & 1 \\
8 & 1
\end{array}\right] \text {, and } \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right] . \text { Is } A \mathbf{x}=\mathbf{b} \text { consistent? }
$$

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No!

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis.

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$.

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. To compute $\hat{\mathbf{b}}$ there are many options.

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. To compute $\hat{\mathbf{b}}$ there are many options. One is to use an orthogonal basis for W.

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let
$\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. To compute $\hat{\mathbf{b}}$ there are many options. One is to use an orthogonal basis for W. Glad we know how to find these!

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let
$\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. To compute $\hat{\mathbf{b}}$ there are many options. One is to use an orthogonal basis for W. Glad we know how to find these! Let $\mathbf{v}_{1}=\mathbf{a}_{1}$.

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let
$\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. To compute $\hat{\mathbf{b}}$ there are many options. One is to use an orthogonal basis for W. Glad we know how to find these! Let $\mathbf{v}_{1}=\mathbf{a}_{1}$. Let

$$
\mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\mathbf{a}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{r}
49 / 71 \\
16 / 71 \\
-6 / 71 \\
-17 / 71
\end{array}\right]
$$

§6.5 Example ©

Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$. Is $A \mathbf{x}=\mathbf{b}$ consistent?
No! Let's find a least-squares solution.
Let $W=\operatorname{Col} A$ and verify that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a basis. Let
$\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$. To compute $\hat{\mathbf{b}}$ there are many options. One is to use an orthogonal basis for W. Glad we know how to find these! Let $\mathbf{v}_{1}=\mathbf{a}_{1}$. Let

$$
\mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\mathbf{a}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{r}
49 / 71 \\
16 / 71 \\
-6 / 71 \\
-17 / 71
\end{array}\right]
$$

So W has orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

§6.5 Example continued

§6.5 Example continued

We can now compute

$$
\hat{\mathbf{b}}=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
29 / 14 \\
39 / 14 \\
22 / 7
\end{array}\right] .
$$

§6.5 Example continued

We can now compute

$$
\hat{\mathbf{b}}=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
29 / 14 \\
39 / 14 \\
22 / 7
\end{array}\right] .
$$

Now to find a least-squares solution we can simply use the augmented matrix

§6.5 Example continued

We can now compute

$$
\hat{\mathbf{b}}=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
29 / 14 \\
39 / 14 \\
22 / 7
\end{array}\right] .
$$

Now to find a least-squares solution we can simply use the augmented matrix

$$
[A \hat{\mathbf{b}}] \sim\left[\begin{array}{rrr}
1 & 0 & 5 / 14 \\
0 & 1 & 2 / 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

§6.5 Example continued

We can now compute

$$
\hat{\mathbf{b}}=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
29 / 14 \\
39 / 14 \\
22 / 7
\end{array}\right] .
$$

Now to find a least-squares solution we can simply use the augmented matrix

$$
[A \hat{\mathbf{b}}] \sim\left[\begin{array}{rrr}
1 & 0 & 5 / 14 \\
0 & 1 & 2 / 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

to get that $\hat{\mathbf{x}}=\left[\begin{array}{r}5 / 14 \\ 2 / 7\end{array}\right]$ is a least-squares solutions to $A \mathbf{x}=\mathbf{b}$.

§6.5 Example continued

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$.

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$.

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$. Then

$$
Q=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 / \sqrt{142} & (49 / 71) / \sqrt{42 / 71} \\
5 / \sqrt{142} & (16 / 71) / \sqrt{42 / 71} \\
7 / \sqrt{142} & (-6 / 71) / \sqrt{42 / 71} \\
8 / \sqrt{142} & (-17 / 71) / \sqrt{42 / 71}
\end{array}\right]
$$

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$. Then

$$
Q=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 / \sqrt{142} & (49 / 71) / \sqrt{42 / 71} \\
5 / \sqrt{142} & (16 / 71) / \sqrt{42 / 71} \\
7 / \sqrt{142} & (-6 / 71) / \sqrt{42 / 71} \\
8 / \sqrt{142} & (-17 / 71) / \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
R=Q^{T} A=\left[\begin{array}{rr}
\sqrt{142} & (11 / 71) \sqrt{142} \\
0 & \sqrt{42 / 71}
\end{array}\right]
$$

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$. Then

$$
Q=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 / \sqrt{142} & (49 / 71) / \sqrt{42 / 71} \\
5 / \sqrt{142} & (16 / 71) / \sqrt{42 / 71} \\
7 / \sqrt{142} & (-6 / 71) / \sqrt{42 / 71} \\
8 / \sqrt{142} & (-17 / 71) / \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
R=Q^{T} A=\left[\begin{array}{rr}
\sqrt{142} & (11 / 71) \sqrt{142} \\
0 & \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
Q Q^{T}=\left[\begin{array}{rrrr}
5 / 6 & 1 / 3 & 0 & -1 / 6 \\
1 / 3 & 11 / 42 & 3 / 14 & 4 / 21 \\
0 & 3 / 14 & 5 / 14 & 3 / 7 \\
-1 / 6 & 4 / 21 & 3 / 7 & 23 / 42
\end{array}\right] .
$$

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$. Then

$$
Q=\left[\begin{array}{ll}
\mathbf{u}_{1} \mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 / \sqrt{142} & (49 / 71) / \sqrt{42 / 71} \\
5 / \sqrt{142} & (16 / 71) / \sqrt{42 / 71} \\
7 / \sqrt{142} & (-6 / 71) / \sqrt{42 / 71} \\
8 / \sqrt{142} & (-17 / 71) / \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
R=Q^{T} A=\left[\begin{array}{rr}
\sqrt{142} & (11 / 71) \sqrt{142} \\
0 & \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
Q Q^{T}=\left[\begin{array}{rrrr}
5 / 6 & 1 / 3 & 0 & -1 / 6 \\
1 / 3 & 11 / 42 & 3 / 14 & 4 / 21 \\
0 & 3 / 14 & 5 / 14 & 3 / 7 \\
-1 / 6 & 4 / 21 & 3 / 7 & 23 / 42
\end{array}\right] .
$$

What is $\hat{\mathbf{b}}$?

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$. Then

$$
Q=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 / \sqrt{142} & (49 / 71) / \sqrt{42 / 71} \\
5 / \sqrt{142} & (16 / 71) / \sqrt{42 / 71} \\
7 / \sqrt{142} & (-6 / 71) / \sqrt{42 / 71} \\
8 / \sqrt{142} & (-17 / 71) / \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
R=Q^{T} A=\left[\begin{array}{rr}
\sqrt{142} & (11 / 71) \sqrt{142} \\
0 & \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
Q Q^{T}=\left[\begin{array}{rrrr}
5 / 6 & 1 / 3 & 0 & -1 / 6 \\
1 / 3 & 11 / 42 & 3 / 14 & 4 / 21 \\
0 & 3 / 14 & 5 / 14 & 3 / 7 \\
-1 / 6 & 4 / 21 & 3 / 7 & 23 / 42
\end{array}\right] .
$$

What is $\hat{\mathbf{b}}$? $\hat{\mathbf{b}}=Q Q^{\top} \mathbf{b}$.

§6.5 Example continued

Alternatively, we can use the $Q R$ factorization of A to compute $\hat{\mathbf{b}}$. Let $\mathbf{u}_{i}=\mathbf{v}_{i} /\left\|\mathbf{v}_{i}\right\|$ for $i=1,2$. Then

$$
Q=\left[\begin{array}{ll}
\mathbf{u}_{1} \mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 / \sqrt{142} & (49 / 71) / \sqrt{42 / 71} \\
5 / \sqrt{142} & (16 / 71) / \sqrt{42 / 71} \\
7 / \sqrt{142} & (-6 / 71) / \sqrt{42 / 71} \\
8 / \sqrt{142} & (-17 / 71) / \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
R=Q^{T} A=\left[\begin{array}{rr}
\sqrt{142} & (11 / 71) \sqrt{142} \\
0 & \sqrt{42 / 71}
\end{array}\right]
$$

and

$$
Q Q^{T}=\left[\begin{array}{rrrr}
5 / 6 & 1 / 3 & 0 & -1 / 6 \\
1 / 3 & 11 / 42 & 3 / 14 & 4 / 21 \\
0 & 3 / 14 & 5 / 14 & 3 / 7 \\
-1 / 6 & 4 / 21 & 3 / 7 & 23 / 42
\end{array}\right] .
$$

What is $\hat{\mathbf{b}}$? $\hat{\mathbf{b}}=Q Q^{T} \mathbf{b}$. We then find $\hat{\mathbf{x}}=[5 / 142 / 7]^{T}$ as before.

§6.5 Theorem 13

§6.5 Theorem 13

In the previous example, most of the work was in computing the projection $\hat{\mathbf{b}}$.

§6.5 Theorem 13

In the previous example, most of the work was in computing the projection $\hat{\mathbf{b}}$. It turns out that we don't need to do this to obtain a least-squares solution $\hat{\mathbf{x}}$.

§6.5 Theorem 13

In the previous example, most of the work was in computing the projection $\hat{\mathbf{b}}$. It turns out that we don't need to do this to obtain a least-squares solution $\hat{\mathbf{x}}$.

Theorem

§6.5 Theorem 13

In the previous example, most of the work was in computing the projection $\hat{\mathbf{b}}$. It turns out that we don't need to do this to obtain a least-squares solution $\hat{\mathbf{x}}$.

Theorem

The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is precisely the solutions of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

§6.5 Theorem 13

In the previous example, most of the work was in computing the projection $\hat{\mathbf{b}}$. It turns out that we don't need to do this to obtain a least-squares solution $\hat{\mathbf{x}}$.

Theorem

The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is precisely the solutions of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. The linear system represented by the boxed equation represents a system of linear equations called the normal equations for $A \mathbf{x}=\mathbf{b}$.

§6.5 Proof of Theorem 13

§6.5 Proof of Theorem 13

Proof.

§6.5 Proof of Theorem 13

Proof.

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.

§6.5 Proof of Theorem 13

Proof.

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}.

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}).

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(き)

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
($\supseteq)$
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(\supseteq)
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the rows of A^{T}

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(\supseteq)
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the rows of A^{T} (columns of A).

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(\supseteq)
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the rows of A^{T} (columns of A). Thus $\mathbf{b}-A \hat{\mathbf{x}} \in W^{\perp}$.

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
($\supseteq)$
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the rows of A^{T} (columns of A). Thus
$\mathbf{b}-A \hat{\mathbf{x}} \in W^{\perp}$. Moreover, we have

$$
\mathbf{b}=\underbrace{A \hat{\mathbf{x}}}_{\in W}+\underbrace{\mathbf{b}-A \hat{\mathbf{x}}}_{\in W^{\perp}}
$$

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(\supseteq)
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the rows of A^{T} (columns of A). Thus $\mathbf{b}-A \hat{\mathbf{x}} \in W^{\perp}$. Moreover, we have

$$
\mathbf{b}=\underbrace{A \hat{\mathbf{x}}}_{\in W}+\underbrace{\mathbf{b}-A \hat{\mathbf{x}}}_{\in W^{\perp}}
$$

By the uniqueness of orthogonal decompositions, $A \hat{\mathbf{x}}$ must be the projection of \mathbf{b} onto W.

§6.5 Proof of Theorem 13

Proof.
Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Let $W=\operatorname{Col} A$.
(\subseteq)
Suppose $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in W^{\perp}. This means that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to every column of A (every row of A^{T}). But this means that $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(つ)
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ so that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the rows of A^{T} (columns of A). Thus $\mathbf{b}-A \hat{\mathbf{x}} \in W^{\perp}$. Moreover, we have

$$
\mathbf{b}=\underbrace{A \hat{\mathbf{x}}}_{\in W}+\underbrace{\mathbf{b}-A \hat{\mathbf{x}}}_{\in W^{\perp}}
$$

By the uniqueness of orthogonal decompositions, $A \hat{\mathbf{x}}$ must be the projection of \mathbf{b} onto W. That is, $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.

§6.5 Example continued

§6.5 Example continued

Let's revisit our example using the previous theorem.

§6.5 Example continued

Let's revisit our example using the previous theorem. We are given A and \mathbf{b}.

§6.5 Example continued

Let's revisit our example using the previous theorem.
We are given A and \mathbf{b}. We compute

§6.5 Example sontinued

Let's revisit our example using the previous theorem. We are given A and \mathbf{b}. We compute

$$
A^{T} A=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
5 & 1 \\
7 & 1 \\
8 & 1
\end{array}\right]=\left[\begin{array}{rr}
142 & 22 \\
22 & 4
\end{array}\right]
$$

§6.5 Example continued

Let's revisit our example using the previous theorem. We are given A and \mathbf{b}. We compute

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
5 & 1 \\
7 & 1 \\
8 & 1
\end{array}\right]=\left[\begin{array}{rr}
142 & 22 \\
22 & 4
\end{array}\right] \\
A^{T} \mathbf{b}=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{r}
57 \\
9
\end{array}\right]
\end{gathered}
$$

§6.5 Example continued

Let's revisit our example using the previous theorem. We are given A and \mathbf{b}. We compute

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
5 & 1 \\
7 & 1 \\
8 & 1
\end{array}\right]=\left[\begin{array}{rr}
142 & 22 \\
22 & 4
\end{array}\right] \\
A^{T} \mathbf{b}=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{r}
57 \\
9
\end{array}\right]
\end{gathered}
$$

How do we find \hat{x} ?

§6.5 Example continued

Let's revisit our example using the previous theorem. We are given A and \mathbf{b}. We compute

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
5 & 1 \\
7 & 1 \\
8 & 1
\end{array}\right]=\left[\begin{array}{rr}
142 & 22 \\
22 & 4
\end{array}\right] \\
A^{T} \mathbf{b}=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{r}
57 \\
9
\end{array}\right]
\end{gathered}
$$

How do we find \hat{x} ?

$$
\left[\begin{array}{rrr}
142 & 22 & 57 \\
22 & 4 & 9
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & 5 / 14 \\
0 & 1 & 2 / 7
\end{array}\right]
$$

§6.5 Example «

§6.5 Example 』

Are least-squares solutions always unique?

§6.5 Example «

Are least-squares solutions always unique? No!

§6.5 Example 』

Are least-squares solutions always unique? No!

$$
\text { Let } A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-3 \\
-1 \\
0 \\
2 \\
5 \\
1
\end{array}\right]
$$

§6.5 Example ©

Are least-squares solutions always unique? No!
Let $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}-3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1\end{array}\right]$. Then

$$
A^{T} A=\left[\begin{array}{llll}
6 & 2 & 2 & 2 \\
2 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 \\
2 & 0 & 0 & 2
\end{array}\right], \quad A^{T} \mathbf{b}=\left[\begin{array}{r}
4 \\
-4 \\
2 \\
6
\end{array}\right]
$$

§6.5 Example ©

Are least-squares solutions always unique? No!
Let $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}-3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1\end{array}\right]$. Then

$$
A^{T} A=\left[\begin{array}{llll}
6 & 2 & 2 & 2 \\
2 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 \\
2 & 0 & 0 & 2
\end{array}\right], \quad A^{T} \mathbf{b}=\left[\begin{array}{r}
4 \\
-4 \\
2 \\
6
\end{array}\right]
$$

and

$$
\left[A^{T} A A^{T} \mathbf{b}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & -1 & -5 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

§6.5 Theorem 14

§6.5 Theorem 14

Given the contrast between example and example $\mathbb{\Delta}$, one might like to know when a least-squares solution is unique...

§6.5 Theorem 14

Given the contrast between example and example $\mathbb{\Delta}$, one might like to know when a least-squares solution is unique...

Theorem

§6.5 Theorem 14

Given the contrast between example and example $\mathbb{\Delta}$, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix.

§6.5 Theorem 14

Given the contrast between example and example Δ, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

§6.5 Theorem 14

Given the contrast between example and example Δ, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$

§6.5 Theorem 14

Given the contrast between example and example one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent

§6.5 Theorem 14

Given the contrast between example and example \star, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent
3. $A^{T} A$ is invertible

§6.5 Theorem 14

Given the contrast between example and example \star, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent
3. $A^{T} A$ is invertible

When these hold, we have $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.

§6.5 Theorem 14

Given the contrast between example and example \star, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent
3. $A^{T} A$ is invertible

When these hold, we have $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.
Due to time constraints we will omit the proof.

§6.5 Theorem 14

Given the contrast between example and example \star, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent
3. $A^{T} A$ is invertible

When these hold, we have $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.
Due to time constraints we will omit the proof.
Question:

§6.5 Theorem 14

Given the contrast between example and example $\mathbb{\Delta}$, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent
3. $A^{T} A$ is invertible

When these hold, we have $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.
Due to time constraints we will omit the proof.
Question: What does this theorem tell us about $A^{T} A$ and the columns of A from example \star.

§6.5 Theorem 14

Given the contrast between example and example $\mathbb{\Delta}$, one might like to know when a least-squares solution is unique...

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. The equation $\mathbf{A x}=\mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^{m}$
2. The columns of A are linearly independent
3. $A^{T} A$ is invertible

When these hold, we have $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.
Due to time constraints we will omit the proof.
Question: What does this theorem tell us about $A^{T} A$ and the columns of A from example \triangleq.
$A^{T} A$ is not invertible, and the columns of A are linearly dependent.

§6.5 Example continued

§6.5 Example continued

We found previously, that this example has a unique least-squares solution.

§6.5 Example continued

We found previously, that this example has a unique least-squares solution. By the previous theorem we can compute

§6.5 Example continued

We found previously, that this example has a unique least-squares solution. By the previous theorem we can compute

$$
\begin{aligned}
\hat{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\left[\begin{array}{rr}
1 / 21 & -11 / 42 \\
-11 / 42 & 71 / 42
\end{array}\right] A^{T} \mathbf{b} \\
& =\left[\begin{array}{rrr}
-1 / 6 & -1 / 42 & 1 / 14 \\
7 / 6 & 5 / 21 & -1 / 7 \\
\hline
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right] \\
& =\left[\begin{array}{r}
5 / 14 \\
2 / 7
\end{array}\right] .
\end{aligned}
$$

§6.5 Theorem 15

§6.5 Theorem 15

Theorem

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns.

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A.

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$,

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$, The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$, The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution given by

$$
\hat{\mathbf{x}}=R^{-1} Q^{\top} \mathbf{b}
$$

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$, The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution given by

$$
\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}
$$

Proof.

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$, The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution given by

$$
\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}
$$

Proof.

By the previous theorem, $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution,

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$, The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution given by

$$
\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}
$$

Proof.

By the previous theorem, $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution, so we just need to check that the given $\hat{\mathbf{x}}$ works.

§6.5 Theorem 15

Theorem

Let A be an $m \times n$ matrix with linearly independent columns. Let $A=Q R$ be a $Q R$ factorization of A. Then for every $\mathbf{b} \in \mathbb{R}^{m}$, The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution given by

$$
\hat{\mathbf{x}}=R^{-1} Q^{\top} \mathbf{b}
$$

Proof.

By the previous theorem, $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution, so we just need to check that the given $\hat{\mathbf{x}}$ works. But

$$
\begin{aligned}
A \hat{\mathbf{x}} & =Q R \hat{\mathbf{x}} \\
& =Q R R^{-1} Q^{T} \mathbf{b} \\
& =Q Q^{T} \mathbf{b}=\hat{\mathbf{b}}
\end{aligned}
$$

§6.5 Example continued

§6.5 Example continued

Using the previously computed Q and R,

§6.5 Example continued

Using the previously computed Q and R, we verify the theorem in this example as follows.

§6.5 Example continued

Using the previously computed Q and R, we verify the theorem in this example as follows.

$$
\begin{aligned}
\hat{\mathbf{x}} & =R^{-1} Q^{T} \mathbf{b} \\
& =\left[\begin{array}{rrr}
-1 / 6 & -1 / 42 & 1 / 14 \\
7 / 6 & 8 / 21 & -1 / 7 \\
-17 / 42
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right] \\
& =\left[\begin{array}{r}
5 / 14 \\
2 / 7
\end{array}\right] .
\end{aligned}
$$

§6.5 Example continued

Using the previously computed Q and R, we verify the theorem in this example as follows.

$$
\begin{aligned}
\hat{\mathbf{x}} & =R^{-1} Q^{T} \mathbf{b} \\
& =\left[\begin{array}{rrr}
-1 / 6 & -1 / 42 & 1 / 14 \\
7 / 6 & 8 / 21 & -1 / 7 \\
-17 / 42
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right] \\
& =\left[\begin{array}{r}
5 / 14 \\
2 / 7
\end{array}\right] .
\end{aligned}
$$

Note that this also shows the unilluminating fact that $\left(A^{T} A\right)^{-1} A^{T}=R^{-1} Q^{T}$ when defined.

§6.5 Example concluded

§6.5 Example so concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane.

§6.5 Example so concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data?

§6.5 Example ${ }^{\text {se }}$ concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error.

§6.5 Example concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals".

§6.5 Example concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture.

§6.5 Example ${ }^{\text {se }}$ concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by

$$
\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}
$$

§6.5 Example ${ }^{\text {se }}$ concluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by
$\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}$.
If we let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}c \\ d\end{array}\right]$,

§6.5 Example soncluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by
$\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}$.
If we let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}c \\ d\end{array}\right]$, then the above
error for a given \mathbf{x} is precisely $\|\mathbf{b}-A \mathbf{x}\|^{2}$.

§6.5 Example soncluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by
$\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}$.
If we let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}c \\ d\end{array}\right]$, then the above
error for a given \mathbf{x} is precisely $\|\mathbf{b}-A \mathbf{x}\|^{2}$. This quantity is minimized precisely when

§6.5 Example soncluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by
$\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}$.
If we let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}c \\ d\end{array}\right]$, then the above
error for a given \mathbf{x} is precisely $\|\mathbf{b}-A \mathbf{x}\|^{2}$. This quantity is minimized precisely when you guessed it

§6.5 Example soncluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by
$\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}$.
If we let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}c \\ d\end{array}\right]$, then the above
error for a given \mathbf{x} is precisely $\|\mathbf{b}-A \mathbf{x}\|^{2}$. This quantity is minimized precisely when you guessed it \mathbf{x} is a least-squares solution to $A \mathbf{x}=\mathbf{b}$.

§6.5 Example soncluded

Consider the quantitative data $(2,1),(5,2),(7,3),(8,3)$ in the (t, y)-plane. How do we find a line $y=c t+d$ that "best fits" this data? Well, to do this we need a notion of error. One might measure this error using "squared residuals". Draw a picture. In our case, this error is given by
$\sum_{i=1}^{4}\left(y_{i}-c t_{i}-d\right)^{2}=(1-2 c-d)^{2}+(2-5 c-d)^{2}+(3-7 c-d)^{2}+(3-8 c-3)^{2}$.
If we let $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}c \\ d\end{array}\right]$, then the above
error for a given \mathbf{x} is precisely $\|\mathbf{b}-A \mathbf{x}\|^{2}$. This quantity is minimized precisely when you guessed it \mathbf{x} is a least-squares solution to $A \mathbf{x}=\mathbf{b} . \hat{\mathbf{x}}=[5 / 142 / 7]^{T}$.

§6.5 Example concluded

§6.5 Example concluded

From the least-squares solution we obtain

§6.5 Example concluded

From the least-squares solution we obtain the line $y=(5 / 14) t+(2 / 7)$

§6.5 Example concluded

From the least-squares solution we obtain the line $y=(5 / 14) t+(2 / 7)$ that best fits

§6.5 Example so concluded

From the least-squares solution we obtain the line $y=(5 / 14) t+(2 / 7)$ that best fits the data $(2,1),(5,2),(7,3),(8,3)$:

§6.5 Example concluded

From the least-squares solution we obtain the line $y=(5 / 14) t+(2 / 7)$ that best fits the data $(2,1),(5,2),(7,3),(8,3)$:

