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Just for today
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Definition

A set of vectors {uy,...,u,} € R” is an orthogonal set if every
pair of vectors is orthogonal.

Theorem

Let S = {uy,...,up} be an orthogonal set of nonzero vectors in

R"™. Then S is linearly indpendent.

Proof.

Suppose that 0 = ciuy + -+ - + cpup. Then
0=0-u; = (crus +--- + cpup) - uy.

This tells us that ¢; = 0. Why? Similarly, we can show all other
coefficients are zero. ]
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Definition 3769
An orthogonal basis of a subspace W C R" is a basis of W that

is an orthogonal set.

Theorem

Let {uy,...,up} be an orthogonal basis for a subspace W C R".
Then for everyy € W, we can write

|y:c1u1+----|-cpup

with c; given explicitly by

y.u.
G="7r.
UJ'-I.I_,'

What's the proof? Use the boxed equation to rewrite y - u;.



§6.2 Classwork

Let
2 1 -1
u; = 11, u=|(0|, us= 4
-2 1 1

1. Let W = Span{u,uz}. Isuz € W+?
2. Is {u1,uz,u3z} an orthogonal set?

1
3. Let y = | 2| . Find the coefficients of y in the basis
3
{u1,up,u3}. Thatis, find ¢, ¢z, c3 € R so that

y = ciu; + cuz + c3u3.
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Let u € R" nonzero, and y € R". Suppose we want to write
y=y+z

with z orthogonal to u and y = au for some o € R. Taking
o = ¥ works. Why? Do you recognize a from a previous slide?



§6.2 Classwork

Let
2 1 -1 1
u; = 11, uwu=|(0|, us= 41, y=|2
-2 1 1 3

Let W = Span{uj, uz}.

1. Find y, the orthogonal projection of y onto u,.
2. What is the distance from y to the line spanned by uy?

3. We can also project onto subspaces with dimension greater
than 1. Looking ahead to §6.3, the projection of y onto W is
the sum of two projections. Can you see which ones?
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Definition
An orthonormal set is an orthogonal set of unit vectors.
If W is a subspace spanned by an orthonormal set, then we say

that set is an orthonormal basis for W.

Examples?
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Theorem

Let U be an m x n matrix. Then U has orthonormal columns if
and only if UTU = I.

What's the proof? What if the columns of U are just orthogonal
instead of orthonormal?
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Let
1-1/2 2/3
U=1|0 1 2/3
1 1/2-2/3

First check that the columns of U are orthogonal. What does this
tell us about UT U? Well,

1 0 1][1-1/2 2/3 2 0 0
~1/2 1 1/2||0 1 2/3|=1[03/2 0
2/32/3-2/3| |1 1/2 -2/3 0 04/3
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Theorem

Let U be an m X n matrix with orthonormal columns. Let
x,y € R". Then

Lo [Ox|| = i]]
2. (Ux)-(Uy) =x-y
3. (Ux)-(Uy)=0ifand only ifx-y=0

Proof.

(Ux)-(Uy) = (Ux)T(Uy) = (x"UT)(Uy) =x" U Uy =x"y = xy
In

OJ
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§6.2 Example

Let
ﬂ% % 1
u=| 0 33 Vi|. x=]2

We can verify that ||Ux|| = ||x|| = V14 = 3.7416573867739...
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Let
ﬂ% % 1
u=| 0 33 Vi|. x=]2

We can verify that ||Ux|| = ||x|| = V14 = 3.7416573867739...

But it is certainly tedious.
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§6.2 Orthogonal matrices

An orthogonal matrix is an invertible matrix U with U~ = UT.
Note that the matrix U in the previous slide was orthogonal.

Looking back at U from our example on the previous slide, what
do you notice about the rows of U?



