Lecture 23

Math 22 Summer 2017
August 09, 2017

Just for today

- §6.2 Orthogonal sets

§6.2 Orthogonal sets

§6.2 Orthogonal sets

Definition

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem
Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem
Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem
Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

This tells us that $c_{1}=0$.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

This tells us that $c_{1}=0$. Why?

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

This tells us that $c_{1}=0$. Why? Similarly, we can show all other coefficients are zero.

§6.2 Orthogonal bases

§6.2 Orthogonal bases

Definition

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$.

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

with c_{j} given explicitly by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}
$$

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

with c_{j} given explicitly by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}
$$

What's the proof?

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

with c_{j} given explicitly by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}
$$

What's the proof? Use the boxed equation to rewrite $\mathbf{y} \cdot \mathbf{u}_{j}$.

§6.2 Classwork

Let

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]
$$

1. Let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Is $\mathbf{u}_{3} \in W^{\perp}$?
2. Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ an orthogonal set?
3. Let $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find the coefficients of \mathbf{y} in the basis
$\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. That is, find $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ so that

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3} .
$$

§6.2 Orthogonal projection

§6.2 Orthogonal projection

Let $\mathbf{u} \in \mathbb{R}^{n}$ nonzero, and $\mathbf{y} \in \mathbb{R}^{n}$.

§6.2 Orthogonal projection

Let $\mathbf{u} \in \mathbb{R}^{n}$ nonzero, and $\mathbf{y} \in \mathbb{R}^{n}$. Suppose we want to write

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

§6.2 Orthogonal projection

Let $\mathbf{u} \in \mathbb{R}^{n}$ nonzero, and $\mathbf{y} \in \mathbb{R}^{n}$. Suppose we want to write

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

with \mathbf{z} orthogonal to \mathbf{u} and $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some $\alpha \in \mathbb{R}$.

§6.2 Orthogonal projection

Let $\mathbf{u} \in \mathbb{R}^{n}$ nonzero, and $\mathbf{y} \in \mathbb{R}^{n}$. Suppose we want to write

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

with \mathbf{z} orthogonal to \mathbf{u} and $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some $\alpha \in \mathbb{R}$. Taking $\alpha=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ works.

§6.2 Orthogonal projection

Let $\mathbf{u} \in \mathbb{R}^{n}$ nonzero, and $\mathbf{y} \in \mathbb{R}^{n}$. Suppose we want to write

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

with \mathbf{z} orthogonal to \mathbf{u} and $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some $\alpha \in \mathbb{R}$. Taking $\alpha=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ works. Why?

§6.2 Orthogonal projection

Let $\mathbf{u} \in \mathbb{R}^{n}$ nonzero, and $\mathbf{y} \in \mathbb{R}^{n}$. Suppose we want to write

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

with \mathbf{z} orthogonal to \mathbf{u} and $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some $\alpha \in \mathbb{R}$. Taking $\alpha=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ works. Why? Do you recognize α from a previous slide?

§6.2 Classwork

Let

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

Let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

1. Find $\hat{\mathbf{y}}$, the orthogonal projection of \mathbf{y} onto \mathbf{u}_{2}.
2. What is the distance from \mathbf{y} to the line spanned by \mathbf{u}_{2} ?
3. We can also project onto subspaces with dimension greater than 1 . Looking ahead to $\S 6.3$, the projection of \mathbf{y} onto W is the sum of two projections. Can you see which ones?

§6.2 Orthonormal sets and bases

§6.2 Orthonormal sets and bases

Definition

§6.2 Orthonormal sets and bases

Definition

An orthonormal set is an orthogonal set of unit vectors.

§6.2 Orthonormal sets and bases

Definition

An orthonormal set is an orthogonal set of unit vectors.
If W is a subspace spanned by an orthonormal set, then we say that set is an orthonormal basis for W.

§6.2 Orthonormal sets and bases

Definition

An orthonormal set is an orthogonal set of unit vectors.
If W is a subspace spanned by an orthonormal set, then we say that set is an orthonormal basis for W.

Examples?

§6.2 Theorem 6

§6.2 Theorem 6

Theorem

§6.2 Theorem 6

Theorem
Let U be an $m \times n$ matrix.

§6.2 Theorem 6

Theorem
Let U be an $m \times n$ matrix. Then U has orthonormal columns if and only if $U^{T} U=I$.

§6.2 Theorem 6

Theorem
Let U be an $m \times n$ matrix. Then U has orthonormal columns if and only if $U^{T} U=I$.

What's the proof?

§6.2 Theorem 6

Theorem

Let U be an $m \times n$ matrix. Then U has orthonormal columns if and only if $U^{T} U=I$.

What's the proof? What if the columns of U are just orthogonal instead of orthonormal?

§6.2 Example

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
1 & -1 / 2 & 2 / 3 \\
0 & 1 & 2 / 3 \\
1 & 1 / 2 & -2 / 3
\end{array}\right]
$$

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
1 & -1 / 2 & 2 / 3 \\
0 & 1 & 2 / 3 \\
1 & 1 / 2 & -2 / 3
\end{array}\right]
$$

First check that the columns of U are orthogonal.

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
1 & -1 / 2 & 2 / 3 \\
0 & 1 & 2 / 3 \\
1 & 1 / 2 & -2 / 3
\end{array}\right]
$$

First check that the columns of U are orthogonal. What does this tell us about $U^{T} U$?

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
1 & -1 / 2 & 2 / 3 \\
0 & 1 & 2 / 3 \\
1 & 1 / 2 & -2 / 3
\end{array}\right]
$$

First check that the columns of U are orthogonal. What does this tell us about $U^{T} U$? Well,

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 / 2 & 1 & 1 / 2 \\
2 / 3 & 2 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 / 2 & 2 / 3 \\
0 & 1 & 2 / 3 \\
1 & 1 / 2 & -2 / 3
\end{array}\right]=\left[\begin{array}{lrr}
2 & 0 & 0 \\
0 & 3 / 2 & 0 \\
0 & 0 & 4 / 3
\end{array}\right] .
$$

§6.2 Theorem 7

§6.2 Theorem 7

Theorem

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns.

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

1. $\|U \mathbf{x}\|=\|x\|$

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

1. $\|U \mathbf{x}\|=\|x\|$
2. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

1. $\|U \mathbf{x}\|=\|x\|$
2. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
3. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

1. $\|U \mathbf{x}\|=\|x\|$
2. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
3. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$

Proof.

§6.2 Theorem 7

Theorem

Let U be an $m \times n$ matrix with orthonormal columns. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then

1. $\|U \mathbf{x}\|=\|x\|$
2. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
3. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$

Proof.

$$
(U \mathbf{x}) \cdot(U \mathbf{y})=(U \mathbf{x})^{T}(U \mathbf{y})=\left(\mathbf{x}^{T} U^{T}\right)(U \mathbf{y})=\mathbf{x}^{T} \underbrace{U^{T} U}_{I_{n}} \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\mathbf{x} \cdot \mathbf{y}
$$

§6.2 Example

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
\frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{\frac{3}{2}} & \sqrt{\frac{1}{3}} \\
0 & \frac{2}{3} & \sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{3}} \\
\frac{1}{2} \sqrt{2} & \frac{1}{3} \sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{3}}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
\frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{\frac{3}{2}} & \sqrt{\frac{1}{3}} \\
0 & \frac{2}{3} & \sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{3}} \\
\frac{1}{2} \sqrt{2} & \frac{1}{3} \sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{3}}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

We can verify that $\|U \mathbf{x}\|=\|\mathbf{x}\|=\sqrt{14}=3.7416573867739 \ldots$

§6.2 Example

Let

$$
U=\left[\begin{array}{rrr}
\frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{\frac{3}{2}} & \sqrt{\frac{1}{3}} \\
0 & \frac{2}{3} & \sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{3}} \\
\frac{1}{2} \sqrt{2} & \frac{1}{3} \sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{3}}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

We can verify that $\|U \mathbf{x}\|=\|\mathbf{x}\|=\sqrt{14}=3.7416573867739 \ldots$
But it is certainly tedious.
§6.2 Orthogonal matrices

§6.2 Orthogonal matrices

An orthogonal matrix is an invertible matrix U with $U^{-1}=U^{T}$.

§6.2 Orthogonal matrices

An orthogonal matrix is an invertible matrix U with $U^{-1}=U^{T}$.
Note that the matrix U in the previous slide was orthogonal.

§6.2 Orthogonal matrices

An orthogonal matrix is an invertible matrix U with $U^{-1}=U^{T}$.
Note that the matrix U in the previous slide was orthogonal.
Looking back at U from our example on the previous slide, what do you notice about the rows of U ?

