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Just for today

I §6.1 Inner products and orthogonality
I §6.2 Orthogonal sets



§6.1 Definitions

Definition
Let u, v ∈ Rn. Viewing column vectors as matrices, we define

u · v := (uT )v ∈ R.

This is just the dot product from calculus class, and is also called
the standard inner product on Rn. The norm (length) of u is
defined by

‖u‖ =
√

u · u.

If ‖u‖ = 1 we say u is a unit vector. Note that any nonzero
vector can be normalized to be a unit vector.

The distance between u and v is defined to be

d(u, v) = ‖u− v‖ .
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§6.1 Properties of inner products

Let u, v,w ∈ Rn and let c ∈ R. Then

1. u · v = v · u
2. (u + v) ·w = u ·w + v ·w
3. (cu) · v = u · (cv) = c(u · v)
4. u · u ≥ 0 and u · u = 0 if and only if u = 0
5. ‖cv‖ = |c| ‖v‖

Note that in R2 and R3 we have that

u · v = ‖u‖ ‖v‖ cos θ

where θ is the angle between u and v. The inner product on Rn

generalizes these notions of angles and distance to higher
dimensions.
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§6.1 Pythagorean Theorem

Theorem
Let u, v ∈ Rn. Then u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.
Expand ‖u + v‖2 to get

(u+v) ·(u+v) = u ·(u+v)+v ·(u+v) = u · u︸︷︷︸
‖u‖2

+ u · v + v · u︸ ︷︷ ︸
2(u·v)

+ v · v︸︷︷︸
‖v‖2



§6.1 Pythagorean Theorem

Theorem

Let u, v ∈ Rn. Then u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.
Expand ‖u + v‖2 to get

(u+v) ·(u+v) = u ·(u+v)+v ·(u+v) = u · u︸︷︷︸
‖u‖2

+ u · v + v · u︸ ︷︷ ︸
2(u·v)

+ v · v︸︷︷︸
‖v‖2



§6.1 Pythagorean Theorem

Theorem
Let u, v ∈ Rn.

Then u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.
Expand ‖u + v‖2 to get

(u+v) ·(u+v) = u ·(u+v)+v ·(u+v) = u · u︸︷︷︸
‖u‖2

+ u · v + v · u︸ ︷︷ ︸
2(u·v)

+ v · v︸︷︷︸
‖v‖2



§6.1 Pythagorean Theorem

Theorem
Let u, v ∈ Rn. Then u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.
Expand ‖u + v‖2 to get

(u+v) ·(u+v) = u ·(u+v)+v ·(u+v) = u · u︸︷︷︸
‖u‖2

+ u · v + v · u︸ ︷︷ ︸
2(u·v)

+ v · v︸︷︷︸
‖v‖2



§6.1 Pythagorean Theorem

Theorem
Let u, v ∈ Rn. Then u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.

Expand ‖u + v‖2 to get

(u+v) ·(u+v) = u ·(u+v)+v ·(u+v) = u · u︸︷︷︸
‖u‖2

+ u · v + v · u︸ ︷︷ ︸
2(u·v)

+ v · v︸︷︷︸
‖v‖2



§6.1 Pythagorean Theorem

Theorem
Let u, v ∈ Rn. Then u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.
Expand ‖u + v‖2 to get

(u+v) ·(u+v) = u ·(u+v)+v ·(u+v) = u · u︸︷︷︸
‖u‖2

+ u · v + v · u︸ ︷︷ ︸
2(u·v)

+ v · v︸︷︷︸
‖v‖2



§6.1 Orthogonal complements

Definition
Let W be a subspace of Rn. Let z ∈ Rn. We say z is orthogonal
to W if z ·w = 0 for every w ∈W . We define the orthogonal
complement of W to be

W⊥ := {z ∈ Rn such that z orthogonal to W }.
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§6.1 Properties of orthogonal complements

Theorem
A vector x ∈ Rn is in W⊥ ⊆ Rn if and only if x is orthogonal to
every vector in a set that spans W .

Proof.
One direction is obvious. Conversely, suppose x ⊥ wi and the span
of {wi}ki=1 is W . Now let w = c1w1 + · · ·+ ckwk . What are we
required to show? That x ·w = 0. But,

x ·w =
[

x1 · · · xn
]

︸ ︷︷ ︸
1×n

w1 · · · wk


︸ ︷︷ ︸

n×k

 c1
...

ck


︸ ︷︷ ︸

k×1

.

Why is this equal to 0?
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§6.1 Properties of orthogonal complements

Theorem
Let W be a subspace of Rn. Then W⊥ is a subspace of Rn.

Proof.

I 0 ∈W⊥.
I W⊥ closed under scalar multiplication:

Let z ∈W⊥. Let c ∈ R. Then for every w ∈W we have
(cz) ·w = c(z ·w) = 0.

I W⊥ closed under addition:
Let z1, z2 ∈W⊥. Then for every w ∈W we have
(z1 + z2) ·w = z1 ·w + z2 ·w = 0 + 0 = 0.
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§6.1 Orthogonality and Nul, Row, Col

Theorem
Let A be an m × n matrix. Then

1. (Row A)⊥ = Nul A
2. (Col A)⊥ = Nul (AT )

Proof.
For the first part show ⊆ and ⊇. For the second part, replace A
with AT to get (

Row (AT )︸ ︷︷ ︸
Col A

)⊥
= Nul (AT ).
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§6.2 Orthogonal sets

Definition
A set of vectors {u1, . . . ,up} ⊆ Rn is an orthogonal set if every
pair of vectors is orthogonal.

Theorem
Let S = {u1, . . . ,up} be an orthogonal set of nonzero vectors in
Rn. Then S is linearly indpendent.

Proof.
Suppose that 0 = c1u1 + · · ·+ cpup. Then

0 = 0 · u1 = (c1u1 + · · ·+ cpup) · u1.

This tells us that c1 = 0. Why? Similarly, we can show all other
coefficients are zero.
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§6.2 Orthogonal bases

Definition
An orthogonal basis of a subspaace W ⊆ Rn is a basis of W that
is an orthogonal set.

Theorem
Let {u1, . . . ,up} be an orthogonal basis for a subspace W ⊆ Rn.
Then for every y ∈W , we can write

y = c1u1 + · · ·+ cpup

with cj given explicitly by

cj = y · uj
uj · uj

.

What’s the proof? Use the boxed equation to rewrite y · uj .
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