

Lecture 22

Math 22 Summer 2017 August 07, 2017

§6.1 Inner products and orthogonality

§6.2 Orthogonal sets

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Viewing column vectors as matrices, we define

$$\mathbf{u} \cdot \mathbf{v} := (\mathbf{u}^T) \mathbf{v} \in \mathbb{R}.$$

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Viewing column vectors as matrices, we define

$$\mathbf{u} \cdot \mathbf{v} := (\mathbf{u}^T) \mathbf{v} \in \mathbb{R}.$$

This is just the **dot product** from calculus class, and is also called the **standard inner product** on \mathbb{R}^n .

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Viewing column vectors as matrices, we define

$$\mathbf{u} \cdot \mathbf{v} := (\mathbf{u}^T) \mathbf{v} \in \mathbb{R}.$$

This is just the **dot product** from calculus class, and is also called the **standard inner product** on \mathbb{R}^n . The **norm** (length) of **u** is defined by

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}}.$$

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Viewing column vectors as matrices, we define

$$\mathbf{u} \cdot \mathbf{v} := (\mathbf{u}^T) \mathbf{v} \in \mathbb{R}.$$

This is just the **dot product** from calculus class, and is also called the **standard inner product** on \mathbb{R}^n . The **norm** (length) of **u** is defined by

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}}.$$

If $\|\mathbf{u}\| = 1$ we say \mathbf{u} is a **unit vector**.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Viewing column vectors as matrices, we define

$$\mathbf{u} \cdot \mathbf{v} := (\mathbf{u}^T) \mathbf{v} \in \mathbb{R}.$$

This is just the **dot product** from calculus class, and is also called the **standard inner product** on \mathbb{R}^n . The **norm** (length) of **u** is defined by

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}}.$$

If $\|\mathbf{u}\| = 1$ we say \mathbf{u} is a **unit vector**. Note that any nonzero vector can be **normalized** to be a unit vector.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Viewing column vectors as matrices, we define

$$\mathbf{u} \cdot \mathbf{v} := (\mathbf{u}^T) \mathbf{v} \in \mathbb{R}.$$

This is just the **dot product** from calculus class, and is also called the **standard inner product** on \mathbb{R}^n . The **norm** (length) of **u** is defined by

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}}.$$

If $\|\mathbf{u}\| = 1$ we say \mathbf{u} is a **unit vector**. Note that any nonzero vector can be **normalized** to be a unit vector.

The distance between \boldsymbol{u} and \boldsymbol{v} is defined to be

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\|.$$

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$
5. $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$

Let
$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$$
 and let $c \in \mathbb{R}$. Then
1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$
5. $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$

Note that in \mathbb{R}^2 and \mathbb{R}^3 we have that

 $\mathbf{u}\cdot\mathbf{v}=\|\mathbf{u}\|\,\|\mathbf{v}\|\cos\theta$

where θ is the angle between **u** and **v**.

Let
$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$$
 and let $c \in \mathbb{R}$. Then
1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$
5. $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$

Note that in \mathbb{R}^2 and \mathbb{R}^3 we have that

$$\mathbf{u}\cdot\mathbf{v}=\|\mathbf{u}\|\,\|\mathbf{v}\|\cos\theta$$

where θ is the angle between **u** and **v**. The inner product on \mathbb{R}^n generalizes these notions of angles and distance to higher dimensions.

§6.1 Orthogonality

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. We say \mathbf{u} and \mathbf{v} are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. We say \mathbf{u} and \mathbf{v} are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Why does this make sense as a generalization of perpendicular?

§6.1 Pythagorean Theorem

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

Proof.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

Proof.

Expand $\|\mathbf{u} + \mathbf{v}\|^2$ to get

$$(\mathbf{u}+\mathbf{v})\cdot(\mathbf{u}+\mathbf{v}) = \mathbf{u}\cdot(\mathbf{u}+\mathbf{v}) + \mathbf{v}\cdot(\mathbf{u}+\mathbf{v}) = \underbrace{\mathbf{u}\cdot\mathbf{u}}_{\|\mathbf{u}\|^2} + \underbrace{\mathbf{u}\cdot\mathbf{v}+\mathbf{v}\cdot\mathbf{u}}_{2(\mathbf{u}\cdot\mathbf{v})} + \underbrace{\mathbf{v}\cdot\mathbf{v}}_{\|\mathbf{v}\|^2}$$

§6.1 Orthogonal complements

Let W be a subspace of \mathbb{R}^n .

Let W be a subspace of \mathbb{R}^n . Let $\mathbf{z} \in \mathbb{R}^n$.

Let W be a subspace of \mathbb{R}^n . Let $z \in \mathbb{R}^n$. We say z is orthogonal to W if $z \cdot w = 0$ for every $w \in W$.

Definition

Let W be a subspace of \mathbb{R}^n . Let $z \in \mathbb{R}^n$. We say z is orthogonal to W if $z \cdot w = 0$ for every $w \in W$. We define the orthogonal complement of W to be

 $W^{\perp} := \{ \mathbf{z} \in \mathbb{R}^n \text{ such that } \mathbf{z} \text{ orthogonal to } W \}.$

§6.1 Properties of orthogonal complements

§6.1 Properties of orthogonal complements

Theorem

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious.

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_i$ and the span of $\{\mathbf{w}_i\}_{i=1}^k$ is W.

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_i$ and the span of $\{\mathbf{w}_i\}_{i=1}^k$ is W. Now let $\mathbf{w} = c_1 \mathbf{w}_1 + \cdots + c_k \mathbf{w}_k$.

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_i$ and the span of $\{\mathbf{w}_i\}_{i=1}^k$ is W. Now let $\mathbf{w} = c_1 \mathbf{w}_1 + \cdots + c_k \mathbf{w}_k$. What are we required to show?

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_i$ and the span of $\{\mathbf{w}_i\}_{i=1}^k$ is W. Now let $\mathbf{w} = c_1 \mathbf{w}_1 + \cdots + c_k \mathbf{w}_k$. What are we required to show? That $\mathbf{x} \cdot \mathbf{w} = 0$.

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_i$ and the span of $\{\mathbf{w}_i\}_{i=1}^k$ is W. Now let $\mathbf{w} = c_1\mathbf{w}_1 + \cdots + c_k\mathbf{w}_k$. What are we required to show? That $\mathbf{x} \cdot \mathbf{w} = 0$. But,

A vector $\mathbf{x} \in \mathbb{R}^n$ is in $W^{\perp} \subseteq \mathbb{R}^n$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_i$ and the span of $\{\mathbf{w}_i\}_{i=1}^k$ is W. Now let $\mathbf{w} = c_1\mathbf{w}_1 + \cdots + c_k\mathbf{w}_k$. What are we required to show? That $\mathbf{x} \cdot \mathbf{w} = 0$. But,

Why is this equal to 0?

§6.1 Properties of orthogonal complements

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^n .

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

► $\mathbf{0} \in W^{\perp}$.

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

- ► $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

- ► $\mathbf{0} \in W^{\perp}$.
- W[⊥] closed under scalar multiplication: Let z ∈ W[⊥]. Let c ∈ ℝ.

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

0 ∈ W[⊥].
W[⊥] closed under scalar multiplication: Let z ∈ W[⊥]. Let c ∈ ℝ. Then for every w ∈ W we have (cz) ⋅ w = c(z ⋅ w) = 0.

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

- 0 ∈ W[⊥].
 W[⊥] closed under scalar multiplication: Let z ∈ W[⊥]. Let c ∈ ℝ. Then for every w ∈ W we have (cz) ⋅ w = c(z ⋅ w) = 0.
 - W^{\perp} closed under addition:

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

- ► $\mathbf{0} \in W^{\perp}$.
- W[⊥] closed under scalar multiplication:
 Let z ∈ W[⊥]. Let c ∈ ℝ. Then for every w ∈ W we have
 (cz) ⋅ w = c(z ⋅ w) = 0.
- W^{\perp} closed under addition: Let $\mathbf{z}_1, \mathbf{z}_2 \in W^{\perp}$.

Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace of \mathbb{R}^n .

Proof.

0 ∈ W[⊥].
W[⊥] closed under scalar multiplication: Let z ∈ W[⊥]. Let c ∈ ℝ. Then for every w ∈ W we have (cz) ⋅ w = c(z ⋅ w) = 0.
W[⊥] closed under addition: Let z₁, z₂ ∈ W[⊥]. Then for every w ∈ W we have (z₁ + z₂) ⋅ w = z₁ ⋅ w + z₂ ⋅ w = 0 + 0 = 0.

§6.1 Orthogonality and Nul, Row, Col

Let A be an $m \times n$ matrix.

Let A be an $m \times n$ matrix. Then

Let A be an $m \times n$ matrix. Then

1. $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$

Let A be an $m \times n$ matrix. Then

1.
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

2. $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}})$

Let A be an $m \times n$ matrix. Then

1.
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

2. $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}})$

Proof.

Let A be an $m \times n$ matrix. Then

1.
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

2. $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}})$

Proof.

For the first part show \subseteq and \supseteq .

Let A be an $m \times n$ matrix. Then

1.
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

2. $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} (A^{\mathsf{T}})$

Proof.

For the first part show \subseteq and \supseteq . For the second part, replace A with A^T to get

$$\left(\underbrace{\operatorname{Row}\left(A^{T}\right)}_{\operatorname{Col} A}\right)^{\perp} = \operatorname{Nul}\left(A^{T}\right).$$

§6.2 Orthogonal sets

§6.2 Orthogonal sets

Definition

Definition

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, \dots, \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n .

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

Proof.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

Proof.

Suppose that $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

Proof.

Suppose that $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$. Then

$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1.$$

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

Proof.

Suppose that $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$. Then

$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1.$$

This tells us that $c_1 = 0$.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

Proof.

Suppose that $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$. Then

$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1.$$

This tells us that $c_1 = 0$. Why?

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if every pair of vectors is orthogonal.

Theorem

Let $S = {\mathbf{u}_1, ..., \mathbf{u}_p}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly indpendent.

Proof.

Suppose that $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$. Then

$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1.$$

This tells us that $c_1 = 0$. Why? Similarly, we can show all other coefficients are zero.

§6.2 Orthogonal bases

§6.2 Orthogonal bases

Definition

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

Theorem

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

Theorem

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^n$.

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

Theorem

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^n$. Then for every $\mathbf{y} \in W$, we can write

$$\mathbf{y}=c_1\mathbf{u}_1+\cdots+c_p\mathbf{u}_p$$

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

Theorem

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^n$. Then for every $\mathbf{y} \in W$, we can write

$$\mathbf{y}=c_1\mathbf{u}_1+\cdots+c_p\mathbf{u}_p$$

with c_j given explicitly by

$$c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}.$$

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

Theorem

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^n$. Then for every $\mathbf{y} \in W$, we can write

$$\mathbf{y}=c_1\mathbf{u}_1+\cdots+c_p\mathbf{u}_p$$

with c_j given explicitly by

$$c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}.$$

What's the proof?

An **orthogonal basis** of a subspaace $W \subseteq \mathbb{R}^n$ is a basis of W that is an orthogonal set.

Theorem

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^n$. Then for every $\mathbf{y} \in W$, we can write

$$\mathbf{y}=c_1\mathbf{u}_1+\cdots+c_p\mathbf{u}_p$$

with c_j given explicitly by

$$c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}.$$

What's the proof? Use the boxed equation to rewrite $\mathbf{y} \cdot \mathbf{u}_i$.