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Just for today

> §6.1 Inner products and orthogonality
> §6.2 Orthogonal sets
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Definition
Let u,v € R". Viewing column vectors as matrices, we define
u-v:=(u")veR

This is just the dot product from calculus class, and is also called
the standard inner product on R”. The norm (length) of u is

defined by
Jull = Vu-u.

If |ju]] =1 we say u is a unit vector. Note that any nonzero
vector can be normalized to be a unit vector.

The distance between u and v is defined to be

d(u,v) = [lu—vl|.
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Let u,v,w € R” and let ¢ € R. Then

lLLu-v=v-u

2. (u+v)-w=u-w+tv-w

3. (cu)-v=u-(cv) =c(u-v)

4 u-u>0andu-u=0ifandonlyifu=20

~Mevil = el vl

1

Note that in R? and R3 we have that
u-v=ullv|cosf

where 6 is the angle between u and v. The inner product on R”
generalizes these notions of angles and distance to higher
dimensions.
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Definition
Let u,v € R". We say u and v are orthogonal if u-v = 0.

Why does this make sense as a generalization of perpendicular?
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Theorem

Let u,v € R". Then u and v are orthogonal if and only if

2 2 2
[lu 4 v[|7 = flul[= + [v]]~

Proof.

Expand [u + v||* to get

(u+v)-(u+v) =u-(u+v)+v-(u+v)=u-u+u-v4+v-u+v-v
~ —— ~~
[lulf? 2(u-v) (Ml

O
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§6.1 Orthogonal complements

Definition
Let W be a subspace of R”. Let z € R". We say z is orthogonal
to W ifz-w =0 for every w € W. We define the orthogonal

complement of W to be

W+ := {z € R" such that z orthogonal to W}.
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Theorem
A vector x € R is in W C R" if and only if x is orthogonal to
every vector in a set that spans W'.

Proof.

One direction is obvious. Conversely, suppose x L w; and the span
of {w,—},’-‘:1 is W. Now let w = c;wq + - - - + cewy,. What are we
required to show? That x-w = 0. But,

C1
X‘W:|:X1"‘Xn:| Wl...wk .
N————
1xn Ck
——
nxk kx1

Why is this equal to 07 O
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Theorem

Let W be a subspace of R". Then W+ is a subspace of R".
Proof.

» 0e W

» W closed under scalar multiplication:
Let z€ W+, Let c € R. Then for every w € W we have
(cz) - w=c(z-w)=0.

» W closed under addition:
Let z1,z0 € WL, Then for every w € W we have
(z1+2z2) w=2z3-w+z,-w=0+0=0.
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Theorem
Let A be an m x n matrix. Then
1. (Row A)t = Nul A
2. (Col A)t = Nul (A7)
Proof.
For the first part show C and D. For the second part, replace A

with AT to get

(Row (AT))l = Nul(A7).
Col A
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Definition

A set of vectors {uy,...,u,} € R” is an orthogonal set if every
pair of vectors is orthogonal.

Theorem

Let S = {uy,...,up} be an orthogonal set of nonzero vectors in

R"™. Then S is linearly indpendent.

Proof.

Suppose that 0 = ciuy + -+ - + cpup. Then
0=0-u; = (crus +--- + cpup) - uy.

This tells us that ¢; = 0. Why? Similarly, we can show all other
coefficients are zero. ]
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§6.2 Orthogonal bases

Definition 3769
An orthogonal basis of a subspaace W C R" is a basis of W that

is an orthogonal set.

Theorem

Let {uy,...,up} be an orthogonal basis for a subspace W C R".
Then for everyy € W, we can write

|y:c1u1+----|-cpup

with c; given explicitly by

y.u.
G="7r.
UJ'-I.I_,'

What's the proof? Use the boxed equation to rewrite y - u;.



