Lecture 22

Math 22 Summer 2017
August 07, 2017

Just for today

- §6.1 Inner products and orthogonality
- §6.2 Orthogonal sets

§6.1 Definitions

§6.1 Definitions

Definition

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$.

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Viewing column vectors as matrices, we define

$$
\mathbf{u} \cdot \mathbf{v}:=\left(\mathbf{u}^{T}\right) \mathbf{v} \in \mathbb{R} .
$$

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Viewing column vectors as matrices, we define

$$
\mathbf{u} \cdot \mathbf{v}:=\left(\mathbf{u}^{T}\right) \mathbf{v} \in \mathbb{R}
$$

This is just the dot product from calculus class, and is also called the standard inner product on \mathbb{R}^{n}.

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Viewing column vectors as matrices, we define

$$
\mathbf{u} \cdot \mathbf{v}:=\left(\mathbf{u}^{T}\right) \mathbf{v} \in \mathbb{R}
$$

This is just the dot product from calculus class, and is also called the standard inner product on \mathbb{R}^{n}. The norm (length) of \mathbf{u} is defined by

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}
$$

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Viewing column vectors as matrices, we define

$$
\mathbf{u} \cdot \mathbf{v}:=\left(\mathbf{u}^{T}\right) \mathbf{v} \in \mathbb{R}
$$

This is just the dot product from calculus class, and is also called the standard inner product on \mathbb{R}^{n}. The norm (length) of \mathbf{u} is defined by

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}
$$

If $\|\mathbf{u}\|=1$ we say \mathbf{u} is a unit vector.

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Viewing column vectors as matrices, we define

$$
\mathbf{u} \cdot \mathbf{v}:=\left(\mathbf{u}^{T}\right) \mathbf{v} \in \mathbb{R} .
$$

This is just the dot product from calculus class, and is also called the standard inner product on \mathbb{R}^{n}. The norm (length) of \mathbf{u} is defined by

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}
$$

If $\|\mathbf{u}\|=1$ we say \mathbf{u} is a unit vector. Note that any nonzero vector can be normalized to be a unit vector.

§6.1 Definitions

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Viewing column vectors as matrices, we define

$$
\mathbf{u} \cdot \mathbf{v}:=\left(\mathbf{u}^{T}\right) \mathbf{v} \in \mathbb{R}
$$

This is just the dot product from calculus class, and is also called the standard inner product on \mathbb{R}^{n}. The norm (length) of \mathbf{u} is defined by

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}
$$

If $\|\mathbf{u}\|=1$ we say \mathbf{u} is a unit vector. Note that any nonzero vector can be normalized to be a unit vector.

The distance between \mathbf{u} and \mathbf{v} is defined to be

$$
d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

§6.1 Properties of inner products

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$.

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$
5. $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$
5. $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$

Note that in \mathbb{R}^{2} and \mathbb{R}^{3} we have that

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.

§6.1 Properties of inner products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and let $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$
5. $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$

Note that in \mathbb{R}^{2} and \mathbb{R}^{3} we have that

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}. The inner product on \mathbb{R}^{n} generalizes these notions of angles and distance to higher dimensions.

§6.1 Orthogonality

§6.1 Orthogonality

Definition

§6.1 Orthogonality

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$.

§6.1 Orthogonality

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. We say \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

§6.1 Orthogonality

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. We say \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
Why does this make sense as a generalization of perpendicular?

§6.1 Pythagorean Theorem

§6.1 Pythagorean Theorem

Theorem

§6.1 Pythagorean Theorem

Theorem
Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$.

§6.1 Pythagorean Theorem

Theorem

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
$$

§6.1 Pythagorean Theorem

Theorem

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
$$

Proof.

§6.1 Pythagorean Theorem

Theorem

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Then \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Proof.

Expand $\|\mathbf{u}+\mathbf{v}\|^{2}$ to get

$$
(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=\mathbf{u} \cdot(\mathbf{u}+\mathbf{v})+\mathbf{v} \cdot(\mathbf{u}+\mathbf{v})=\underbrace{\mathbf{u} \cdot \mathbf{u}}_{\|\mathbf{u}\|^{2}}+\underbrace{\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}}_{2(\mathbf{u} \cdot \mathbf{v})}+\underbrace{\mathbf{v} \cdot \mathbf{v}}_{\|\mathbf{v}\|^{2}}
$$

§6.1 Orthogonal complements

§6.1 Orthogonal complements

Definition

Let W be a subspace of \mathbb{R}^{n}.

§6.1 Orthogonal complements

Definition

Let W be a subspace of \mathbb{R}^{n}. Let $\mathbf{z} \in \mathbb{R}^{n}$.

§6.1 Orthogonal complements

Definition

Let W be a subspace of \mathbb{R}^{n}. Let $\mathbf{z} \in \mathbb{R}^{n}$. We say \mathbf{z} is orthogonal to W if $\mathbf{z} \cdot \mathbf{w}=\mathbf{0}$ for every $\mathbf{w} \in W$.

§6.1 Orthogonal complements

Definition

Let W be a subspace of \mathbb{R}^{n}. Let $\mathbf{z} \in \mathbb{R}^{n}$. We say \mathbf{z} is orthogonal to W if $\mathbf{z} \cdot \mathbf{w}=\mathbf{0}$ for every $\mathbf{w} \in W$. We define the orthogonal complement of W to be

$$
W^{\perp}:=\left\{\mathbf{z} \in \mathbb{R}^{n} \text { such that } \mathbf{z} \text { orthogonal to } W\right\} .
$$

§6.1 Properties of orthogonal complements

§6.1 Properties of orthogonal complements

Theorem

§6.1 Properties of orthogonal complements

Theorem
A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

§6.1 Properties of orthogonal complements

Theorem
A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

§6.1 Properties of orthogonal complements

Theorem
A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious.

§6.1 Properties of orthogonal complements

Theorem
A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_{i}$ and the span of $\left\{\mathbf{w}_{i}\right\}_{i=1}^{k}$ is W.

§6.1 Properties of orthogonal complements

Theorem

A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_{i}$ and the span of $\left\{\mathbf{w}_{i}\right\}_{i=1}^{k}$ is W. Now let $\mathbf{w}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}$.

§6.1 Properties of orthogonal complements

Theorem

A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_{i}$ and the span of $\left\{\mathbf{w}_{i}\right\}_{i=1}^{k}$ is W. Now let $\mathbf{w}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}$. What are we required to show?

§6.1 Properties of orthogonal complements

Theorem

A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_{i}$ and the span of $\left\{\mathbf{w}_{i}\right\}_{i=1}^{k}$ is W. Now let $\mathbf{w}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}$. What are we required to show? That $\mathbf{x} \cdot \mathbf{w}=0$.

§6.1 Properties of orthogonal complements

Theorem

A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_{i}$ and the span of $\left\{\mathbf{w}_{i}\right\}_{i=1}^{k}$ is W. Now let $\mathbf{w}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}$. What are we required to show? That $\mathbf{x} \cdot \mathbf{w}=0$. But,

$$
\mathbf{x} \cdot \mathbf{w}=\underbrace{\left[x_{1}\right.}_{1 \times n} \cdots \cdots x_{n}] \quad \underbrace{\left[\mathbf{w}_{1} \cdots \mathbf{w}_{k}\right]}_{n \times k} \underbrace{\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right]}_{k \times 1} .
$$

§6.1 Properties of orthogonal complements

Theorem

A vector $\mathbf{x} \in \mathbb{R}^{n}$ is in $W^{\perp} \subseteq \mathbb{R}^{n}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

Proof.

One direction is obvious. Conversely, suppose $\mathbf{x} \perp \mathbf{w}_{i}$ and the span of $\left\{\mathbf{w}_{i}\right\}_{i=1}^{k}$ is W. Now let $\mathbf{w}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}$. What are we required to show? That $\mathbf{x} \cdot \mathbf{w}=0$. But,

$$
\mathbf{x} \cdot \mathbf{w}=\underbrace{\left[x_{1} \cdots x_{n}\right.}_{1 \times n} \cdots \underbrace{\left[\mathbf{w}_{1} \cdots \mathbf{w}_{k}\right]}_{n \times k} \underbrace{\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right]}_{k \times 1} .
$$

Why is this equal to 0 ?

§6.1 Properties of orthogonal complements

§6.1 Properties of orthogonal complements

Theorem

§6.1 Properties of orthogonal complements

Theorem
Let W be a subspace of \mathbb{R}^{n}.

§6.1 Properties of orthogonal complements

Theorem
Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.

§6.1 Properties of orthogonal complements

Theorem
Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.
Proof.

§6.1 Properties of orthogonal complements

Theorem
Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.
Proof.

- $\mathbf{0} \in W^{\perp}$.

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.
Proof.

- $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.
Proof.

- $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

Let $\mathbf{z} \in W^{\perp}$. Let $c \in \mathbb{R}$.

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.

Proof.

- $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

Let $\mathbf{z} \in W^{\perp}$. Let $c \in \mathbb{R}$. Then for every $\mathbf{w} \in W$ we have $(c \mathbf{z}) \cdot \mathbf{w}=c(\mathbf{z} \cdot \mathbf{w})=0$.

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.

Proof.

- $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

Let $\mathbf{z} \in W^{\perp}$. Let $c \in \mathbb{R}$. Then for every $\mathbf{w} \in W$ we have $(c \mathbf{z}) \cdot \mathbf{w}=c(\mathbf{z} \cdot \mathbf{w})=0$.

- W^{\perp} closed under addition:

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.

Proof.

- $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

Let $\mathbf{z} \in W^{\perp}$. Let $c \in \mathbb{R}$. Then for every $\mathbf{w} \in W$ we have $(c \mathbf{z}) \cdot \mathbf{w}=c(\mathbf{z} \cdot \mathbf{w})=0$.

- W^{\perp} closed under addition:

Let $\mathbf{z}_{1}, \mathbf{z}_{2} \in W^{\perp}$.

§6.1 Properties of orthogonal complements

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then W^{\perp} is a subspace of \mathbb{R}^{n}.

Proof.

- $\mathbf{0} \in W^{\perp}$.
- W^{\perp} closed under scalar multiplication:

Let $\mathbf{z} \in W^{\perp}$. Let $c \in \mathbb{R}$. Then for every $\mathbf{w} \in W$ we have $(c \mathbf{z}) \cdot \mathbf{w}=c(\mathbf{z} \cdot \mathbf{w})=0$.

- W^{\perp} closed under addition:

Let $\mathbf{z}_{1}, \mathbf{z}_{2} \in W^{\perp}$. Then for every $\mathbf{w} \in W$ we have
$\left(\mathbf{z}_{1}+\mathbf{z}_{2}\right) \cdot \mathbf{w}=\mathbf{z}_{1} \cdot \mathbf{w}+\mathbf{z}_{2} \cdot \mathbf{w}=0+0=0$.

§6.1 Orthogonality and Nul, Row, Col

§6.1 Orthogonality and Nul, Row, Col

Theorem

§6.1 Orthogonality and Nul, Row, Col

Theorem
Let A be an $m \times n$ matrix.

§6.1 Orthogonality and Nul, Row, Col

Theorem
Let A be an $m \times n$ matrix. Then

§6.1 Orthogonality and Nul, Row, Col

Theorem

Let A be an $m \times n$ matrix. Then

1. $(\text { Row } A)^{\perp}=\operatorname{Nul} A$

§6.1 Orthogonality and Nul, Row, Col

Theorem

Let A be an $m \times n$ matrix. Then

1. $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$
2. $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$

§6.1 Orthogonality and Nul, Row, Col

Theorem

Let A be an $m \times n$ matrix. Then

1. $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$
2. $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$

Proof.

§6.1 Orthogonality and Nul, Row, Col

Theorem

Let A be an $m \times n$ matrix. Then

1. $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$
2. $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$

Proof.

For the first part show \subseteq and \supseteq.

§6.1 Orthogonality and Nul, Row, Col

Theorem

Let A be an $m \times n$ matrix. Then

1. $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$
2. $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$

Proof.

For the first part show \subseteq and \supseteq. For the second part, replace A with A^{T} to get

$$
(\underbrace{\operatorname{Row}\left(A^{T}\right)}_{\operatorname{Col} A})^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

§6.2 Orthogonal sets

§6.2 Orthogonal sets

Definition

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem
Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem
Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem
Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

This tells us that $c_{1}=0$.

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

This tells us that $c_{1}=0$. Why?

§6.2 Orthogonal sets

Definition

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set if every pair of vectors is orthogonal.

Theorem

Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^{n}. Then S is linearly indpendent.

Proof.
Suppose that $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}$. Then

$$
0=\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} .
$$

This tells us that $c_{1}=0$. Why? Similarly, we can show all other coefficients are zero.

§6.2 Orthogonal bases

§6.2 Orthogonal bases

Definition

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$.

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

with c_{j} given explicitly by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}
$$

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

with c_{j} given explicitly by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}
$$

What's the proof?

§6.2 Orthogonal bases

Definition

An orthogonal basis of a subspaace $W \subseteq \mathbb{R}^{n}$ is a basis of W that is an orthogonal set.

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W \subseteq \mathbb{R}^{n}$. Then for every $\mathbf{y} \in W$, we can write

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

with c_{j} given explicitly by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}
$$

What's the proof? Use the boxed equation to rewrite $\mathbf{y} \cdot \mathbf{u}_{j}$.

