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Just for today

I Applications: Markov chains, PageRank



§4.9 Markov Chains

Definition
A probability vector is a vector whose entries sum to 1. A
stochastic matrix S is an n × n matrix whose columns are
probability vectors. A Markov chain is a linear difference equation
whose transition matrix is a stochastic matrix. The process of
starting with an initial state vector and updating states via (left)
multiplication by S is called a stochastic process or Markov
process.

Intuitively, the Sij entry of S encodes the probability of moving
from state j to state i . Let’s see this in an example.
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§4.9 Example

I Initial distribution: Suppose a country land-use survey
showed that 10% of the land was urban, 50% was unused,
and 40% was agricultural.

I Transitional information: A year later another survey
reveals:

I 70% of the urban land remains urban, 10% becomes unused,
and 20% becomes agricultural.

I 20% of the unused land becomes urban, 60% remains unused,
and 20% becomes agricultural.

I 0% of the agricultural land becomes urban, 20% of the
agricultural land becomes unused, and 80% remains
agricultural.

I The Markov Chain assumption: This trend continues...
So we can encode this transition in a stochastic matrix S, and
the initial probability vector P0.

S =

 .7 .2 0
.1 .6 .2
.2 .2 .8

 , P0 =

 .1.5
.4


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§4.9 Example continued

What is the long-term behaviour of this process?

Note that the ij entry of Sk represent the probability of going from
state j to state i after k iterations of this process.

Also note that Pk = SkP0.

Since we are dealing with powers of S, is S diagonalizable?

Well charpoly(S) = −(λ− 1)(λ− 3/5)(λ− 1/2). So Yes!

Let P =

 1 1 1
3/2 −1/2 −1
5/2 −1/2 0

 How did we get P?

Then P−1SP = D is diagonal with the eigenvalues along the
diagonal.

How does this help us find the long-term behaviour?
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§4.9 Example continued

Consider limk→∞ Sk .
What do you think it means for a matrix to converge? We get

lim
k→∞

Sk = lim
k→∞

(PDkP−1) = P
(

lim
k→∞

Dk
)

P−1

=

 1 1 1
3/2 −1/2 −1
5/2 −1/2 0


 a 0 0

0 b 0
0 0 c


 1/5 1/5 1/5

1 1 −1
−1/5 −6/5 4/5


where

a = lim
k→∞

1k = 1

b = lim
k→∞

(3/5)k = 0

c = lim
k→∞

(1/2)k = 0.

almost there...
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§4.9 Example continued

Multiplying out these three matrices we get

lim
k→∞

Sk =

 .2 .2 .2.3 .3 .3
.5 .5 .5

 .
What is the long term behaviour of this process?

What property does the vector P =

 .2.3
.5

 have? SP = P.

We should recognize this vector as an element of the λ = 1
eigenspace scaled to be a probability vector.
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§4.9 “Nice” matrices

Can we always guarantee 1 as an eigenvalue and the existence of a
unique steady state vector?

A sufficient condition for an n× n matrix S to have this property is
if we have a strictly decreasing inequality of eigenvalue magnitudes:

1 = |λ1| > |λ2| > · · · > |λn|.

How does this relate to our previous example?
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PageRank

What does this have to do with ranking webpages?

We use the links between websites as the measure of a website’s
importance. So a website is more important if it has more links
pointing to it.

To measure this type of importance we imagine taking a “random
walk” from website to website along the hyperlinks. But what
happens if we can’t go anywhere? Then we pick a website at
random and continue.

This process is encoded in a stochastic matrix.

We then modify this matrix to have “nice properties”.

The resulting matrix has a unique steady state vector with the
page ranks as the entries.

http:
//www.ams.org/samplings/feature-column/fcarc-pagerank
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PageRank Example

Suppose we are given the following network (graph).

0 1 2

How do we get a stochastic matrix from this? Well, we start with
the weighted adjacency matrix of the network. This might not be
stochastic because what happens when we get to node 2? By
picking a new node at random we arrive at a stochastic matrix. 0 0 1

1/2 0 0
1/2 0 0

 −→
 0 1/3 1

1/2 1/3 0
1/2 1/3 0

 , P =

 4/10
3/10
3/10


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PageRank “Google” matrix G

To guarantee that our matrix has the desired properties
we make the following modification.

Let S be a stochastic n × n matrix. Let 1n be the n × n matrix of
all 1s. Let α ∈ (0, 1). We define a new matrix G by

G = αS + (1− α)(1/n)1n.

The resulting matrix G emphasizes the hyperlink structure of the
graph (encoded in S) with parameter α. That is, with probability
α we use the hyperlink structure for our random walk and with
probability 1− α we just visit websites at random.

The resulting matrix G remains stochastic, and has the property
that every entry in G is strictly positive. Although we can’t provide
a proof, this is enough to guarantee G has a unique steady state
vector.

Let’s finish up our example
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PageRank Example continued

Let α = .85 and S from our example. Then we get that

G = α

 0 1/3 1
1/2 1/3 0
1/2 1/3 0

+(1−α)(1/3)

 1 1 1
1 1 1
1 1 1

 =

 1/20 1/3 9/10
19/40 1/3 1/20
19/40 1/3 1/20


We find that G has steady state vector

P =

 37/94
57/188
57/188

 =

 0.393617021276596
0.303191489361702
0.303191489361702

 .
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P =

 37/94
57/188
57/188

 =

 0.393617021276596
0.303191489361702
0.303191489361702

 .
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PageRank in practice?

In practice how big should n be? The number of webpages!
Such a matrix is so gigantic that we cannot hope to compute
anything exactly.

Yet we still want to find approximations for a steady state vector.
We do this by starting with some initial vector P0 and computing
GkP0 for some (not huge) value of k. In giant examples we can’t
just do this directly, so we write S = H + A in a specific way to get

G = α(H + A) + (1− α)(1/n)1 = αH + αA + (1− α)(1/n)1.

We can do this in such a way so that H has lots of zeros and every
row of A is the same. For example, in our 3 node example, we have

G = α


 0 0 1

1/2 0 0
1/2 0 0

+

 0 1/3 0
0 1/3 0
0 1/3 0


+ 1− α

n

 1 1 1
1 1 1
1 1 1

 .
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