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Just for today

I §5.3 Diagonalization



§5.3 Diagonalizable

Definition
Let A be an n × n matrix. A is diagonalizable if it is similar to a
diagonal matrix.

As an example suppose we have

A =

 4 −3 2
0 −1 0
−1 3 1

 =

−1 1 −2
0 1 0
1 −1 1


 2 0 0

0 −1 0
0 0 3


 1 1 2

0 1 0
−1 0 −1

 = P−1DP

Then it is easy to compute powers of A. How?

Diagonalizability is closely tied to eigenthings...
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§5.3 Theorem 5

Let A be an n × n matrix. Then A is diagonalizable
if and only if A has n linearly independent eigenvectors.

Proof.
First note that for any n × n matrix P = [v1 · · · vn] and diagonal
matrix D with diagonal entries λ1, . . . , λn we have the following:

AP = A[v1 · · · vn] = [Av1 · · · Avn]

PD = [v1 · · · vn]D = [λ1v1 · · · λnvn] .

If A is diagonalizable, then the columns of P are linearly
independent (since P is invertible) and the boxed equations imply
the columns of P are eigenvectors of A. Conversely, if A has n
linearly independent eigenvectors, then let P have these vectors as
the columns and let D be the diagonal matrix with the n
eigenvalues. Then A is similar to D via the boxed equations.
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§5.3 Theorem 6

Theorem
An n × n matrix with n distinct eigenvalues is diagonalizable.

What’s the proof?

Can you find a matrix without distinct eigenvalues that is
diagonalizable?

How do you determine diagonalizability when the eigenvalues are
not distinct?
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algebraic multiplicity of λk for 1 ≤ k ≤ p.

I A is diagonalizable if and only if the charpoly of A factors
completely and the geometric multiplicities equal the algebraic
multiplicities for every eigenvalue.

I Suppose A is diagonalizable and Bk is a basis for the λk
eigenspace (for each k). Then the collection of vectors in all
the Bk is a basis of eigenvectors for Rn.

Let’s see how we identify and diagonalize matrices in practice...
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§5.3 Diagonalization Algorithm

Let A be an n × n matrix. Let’s determine if A is diagonalizable
and if so compute D and P.

1. Compute charpoly of A. If charpoly factors into linear factors
(over R) then continue. Otherwise A is not diagonalizable.

2. Compute bases of the eigenspaces for each eigenvector. If any
of the geometric multiplicities are not equal to their
corresponding algebraic multiplicities, then A is not
diagonalizable. If every eigenspace has dimension equal to its
corresponding algebraic multiplicity, then A is diagonalizable
and continue.

3. In this case, D is the diagonal matrix with the eigenvalues
down the diagonal and P is the matrix whose columns are the
basis vectors of the corresponding eigenspaces. Permuting
columns is fine, just make sure P and D correspond to each
other.
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§5.3 Classwork

1. Explicitly diagonalize the following matrices (if possible).

(a) A =
[
−5 2
−12 5

]
(b) B =

[
4 −1
1 2

]
(c) C =

[
5 0
0 5

]
(d) D =

[
5 1
0 5

]
2. Write an expression for Ak using its diagonal representation.

3. Use the expression for Ak to evaluate Ak
[

1
1

]
.


