Lecture 20

Math 22 Summer 2017
August 02, 2017

Just for today

- §5.3 Diagonalization

§5.3 Diagonalizable

§5.3 Diagonalizable

Definition

§5.3 Diagonalizable

Definition

Let A be an $n \times n$ matrix.

§5.3 Diagonalizable

Definition

Let A be an $n \times n$ matrix. A is diagonalizable if it is similar to a diagonal matrix.

§5.3 Diagonalizable

Definition

Let A be an $n \times n$ matrix. A is diagonalizable if it is similar to a diagonal matrix.

As an example suppose we have

$$
A=\left[\begin{array}{rrr}
4 & -3 & 2 \\
0 & -1 & 0 \\
-1 & 3 & 1
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 1 & -2 \\
0 & 1 & 0 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right]=P^{-1} D P
$$

§5.3 Diagonalizable

Definition

Let A be an $n \times n$ matrix. A is diagonalizable if it is similar to a diagonal matrix.

As an example suppose we have
$A=\left[\begin{array}{rrr}4 & -3 & 2 \\ 0 & -1 & 0 \\ -1 & 3 & 1\end{array}\right]=\left[\begin{array}{rrr}-1 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & -1\end{array}\right]=P^{-1} D P$
Then it is easy to compute powers of A.

§5.3 Diagonalizable

Definition

Let A be an $n \times n$ matrix. A is diagonalizable if it is similar to a diagonal matrix.

As an example suppose we have
$A=\left[\begin{array}{rrr}4 & -3 & 2 \\ 0 & -1 & 0 \\ -1 & 3 & 1\end{array}\right]=\left[\begin{array}{rrr}-1 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & -1\end{array}\right]=P^{-1} D P$
Then it is easy to compute powers of A. How?

§5.3 Diagonalizable

Definition

Let A be an $n \times n$ matrix. A is diagonalizable if it is similar to a diagonal matrix.

As an example suppose we have
$A=\left[\begin{array}{rrr}4 & -3 & 2 \\ 0 & -1 & 0 \\ -1 & 3 & 1\end{array}\right]=\left[\begin{array}{rrr}-1 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & -1\end{array}\right]=P^{-1} D P$
Then it is easy to compute powers of A. How?
Diagonalizability is closely tied to eigenthings...

§5.3 Theorem 5

§5.3 Theorem 5

Let A be an $n \times n$ matrix.

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.

First note that for any $n \times n$ matrix $P=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ and diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ we have the following:

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.

First note that for any $n \times n$ matrix $P=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ and diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ we have the following:

$$
A P=A\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]=\left[A \mathbf{v}_{1} \cdots A \mathbf{v}_{n}\right]
$$

$$
P D=\left[\mathbf{v}_{1} \cdots \cdots \mathbf{v}_{n}\right] D=\left[\lambda_{1} \mathbf{v}_{1} \cdots \lambda_{n} \mathbf{v}_{n}\right] .
$$

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.

First note that for any $n \times n$ matrix $P=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ and diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ we have the following:

$$
A P=A\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]=\left[A \mathbf{v}_{1} \cdots A \mathbf{v}_{n}\right]
$$

$$
P D=\left[\begin{array}{llll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right] D=\left[\begin{array}{llll}
\lambda_{1} & \mathbf{v}_{1} & \cdots & \lambda_{n} \\
\mathbf{v}_{n}
\end{array}\right] .
$$

If A is diagonalizable, then the columns of P are linearly independent (since P is invertible) and the boxed equations imply the columns of P are eigenvectors of A.

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.

First note that for any $n \times n$ matrix $P=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ and diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ we have the following:

$$
A P=A\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]=\left[A \mathbf{v}_{1} \cdots A \mathbf{v}_{n}\right]
$$

$$
P D=\left[\mathbf{v}_{1} \cdots \cdots \mathbf{v}_{n}\right] D=\left[\begin{array}{llll}
& \lambda_{1} & \mathbf{v}_{1} & \cdots
\end{array} \lambda_{n} \mathbf{v}_{n}\right] .
$$

If A is diagonalizable, then the columns of P are linearly independent (since P is invertible) and the boxed equations imply the columns of P are eigenvectors of A. Conversely, if A has n linearly independent eigenvectors, then let P have these vectors as the columns and let D be the diagonal matrix with the n eigenvalues.

§5.3 Theorem 5

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof.

First note that for any $n \times n$ matrix $P=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ and diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ we have the following:

$$
A P=A\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]=\left[A \mathbf{v}_{1} \cdots A \mathbf{v}_{n}\right]
$$

$$
P D=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right] D=\left[\lambda_{1} \mathbf{v}_{1} \cdots \lambda_{n} \mathbf{v}_{n}\right] .
$$

If A is diagonalizable, then the columns of P are linearly independent (since P is invertible) and the boxed equations imply the columns of P are eigenvectors of A. Conversely, if A has n linearly independent eigenvectors, then let P have these vectors as the columns and let D be the diagonal matrix with the n eigenvalues. Then A is similar to D via the boxed equations.

§5.3 Theorem 6

§5.3 Theorem 6

Theorem

§5.3 Theorem 6

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

§5.3 Theorem 6

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
What's the proof?

§5.3 Theorem 6

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
What's the proof?
Can you find a matrix without distinct eigenvalues that is diagonalizable?

§5.3 Theorem 6

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
What's the proof?
Can you find a matrix without distinct eigenvalues that is diagonalizable?

How do you determine diagonalizability when the eigenvalues are not distinct?

§5.3 Theorem 7

§5.3 Theorem 7

Theorem

§5.3 Theorem 7

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.

§5.3 Theorem 7

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.

- The geometric multiplicity of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k} for $1 \leq k \leq p$.

§5.3 Theorem 7

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.

- The geometric multiplicity of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k} for $1 \leq k \leq p$.
- A is diagonalizable if and only if the charpoly of A factors completely and the geometric multiplicities equal the algebraic multiplicities for every eigenvalue.

§5.3 Theorem 7

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.

- The geometric multiplicity of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k} for $1 \leq k \leq p$.
- A is diagonalizable if and only if the charpoly of A factors completely and the geometric multiplicities equal the algebraic multiplicities for every eigenvalue.
- Suppose A is diagonalizable and \mathcal{B}_{k} is a basis for the λ_{k} eigenspace (for each k). Then the collection of vectors in all the \mathcal{B}_{k} is a basis of eigenvectors for \mathbb{R}^{n}.

§5.3 Theorem 7

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.

- The geometric multiplicity of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k} for $1 \leq k \leq p$.
- A is diagonalizable if and only if the charpoly of A factors completely and the geometric multiplicities equal the algebraic multiplicities for every eigenvalue.
- Suppose A is diagonalizable and \mathcal{B}_{k} is a basis for the λ_{k} eigenspace (for each k). Then the collection of vectors in all the \mathcal{B}_{k} is a basis of eigenvectors for \mathbb{R}^{n}.

Let's see how we identify and diagonalize matrices in practice...

§5.3 Diagonalization Algorithm

§5.3 Diagonalization Algorithm

Let A be an $n \times n$ matrix.

§5.3 Diagonalization Algorithm

Let A be an $n \times n$ matrix. Let's determine if A is diagonalizable and if so compute D and P.

§5.3 Diagonalization Algorithm

Let A be an $n \times n$ matrix. Let's determine if A is diagonalizable and if so compute D and P.

1. Compute charpoly of A. If charpoly factors into linear factors (over \mathbb{R}) then continue. Otherwise A is not diagonalizable.

§5.3 Diagonalization Algorithm

Let A be an $n \times n$ matrix. Let's determine if A is diagonalizable and if so compute D and P.

1. Compute charpoly of A. If charpoly factors into linear factors (over \mathbb{R}) then continue. Otherwise A is not diagonalizable.
2. Compute bases of the eigenspaces for each eigenvector. If any of the geometric multiplicities are not equal to their corresponding algebraic multiplicities, then A is not diagonalizable. If every eigenspace has dimension equal to its corresponding algebraic multiplicity, then A is diagonalizable and continue.

§5.3 Diagonalization Algorithm

Let A be an $n \times n$ matrix. Let's determine if A is diagonalizable and if so compute D and P.

1. Compute charpoly of A. If charpoly factors into linear factors (over \mathbb{R}) then continue. Otherwise A is not diagonalizable.
2. Compute bases of the eigenspaces for each eigenvector. If any of the geometric multiplicities are not equal to their corresponding algebraic multiplicities, then A is not diagonalizable. If every eigenspace has dimension equal to its corresponding algebraic multiplicity, then A is diagonalizable and continue.
3. In this case, D is the diagonal matrix with the eigenvalues down the diagonal and P is the matrix whose columns are the basis vectors of the corresponding eigenspaces. Permuting columns is fine, just make sure P and D correspond to each other.

§5.3 Classwork

1. Explicitly diagonalize the following matrices (if possible).
(a) $A=\left[\begin{array}{rr}-5 & 2 \\ -12 & 5\end{array}\right]$
(b) $B=\left[\begin{array}{rr}4 & -1 \\ 1 & 2\end{array}\right]$
(c) $C=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
(d) $D=\left[\begin{array}{ll}5 & 1 \\ 0 & 5\end{array}\right]$
2. Write an expression for A^{k} using its diagonal representation.
3. Use the expression for A^{k} to evaluate $A^{k}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
