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Just for today

I §5.1 Finish up
I §5.2 Characteristic polynomials



§5.1 Theorem 1

Theorem
Let A be a triangular n × n matrix. Then the eigenvalues of A are
the entries along the main diagonal of A.

Proof.
Let A = (aij). λ is an eigenvalue of A if and only if the null space
of A− λIn contains a nonzero vector. Write out A− λIn under the
assumption that A is triangular to show that (A− λIn)x = 0 has a
free variable precisely when λ = akk for some k ≤ n.
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§5.1 Theorem 2

Theorem
Let A be an n × n matrix. Let v1, . . . , vr be eigenvectors
corresponding to distinct eigenvalues λ1, . . . , λr for A. Then
{v1, . . . , vr} is a linearly independent set.

We will prove this by contradiction.
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§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose {v1, . . . , vr} is dependent. Then some
vector in this set is a linear combination of the vectors listed before
it with all preceding vectors linearly independent. Let p be the
least index such that vp+1 has this property. Then

vp+1 = c1v1 + · · ·+ cpvp , with {v1, . . . , vp} independent.

Multiply by A on both sides to get

Avp+1 = Ac1v1 + · · ·+ Acpvp = c1Av1 + · · ·+ cpAvp.

Now use that these are eigenvectors. We get that

λp+1vp+1 = c1λ1v1 + · · ·+ cpλpvp .

How can we use the boxed equations to get a contradiction?
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§5.2 IMT again

Suppose A has λ = 0 as an eigenvalue? What can you say about
the invertibility of A?

Theorem
Let A be a square n × n matrix. The following are equivalent.

(s) λ = 0 is not an eigenvalue of A.
(t) det(A) 6= 0.
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det(A− λIn) = 0.

Note that det(A− λIn) is a polynomial in λ called the
characteristic polynomial. An eigenvalue of A corresponds to a
root of the charpoly of A. The multiplicity of the root is called the
algebraic multiplicity of the eigenvalue.

Proof.
λ is an eigenvalue of A precisely when (A− λIn)x = 0 has a
nontrivial solution. This is equivalent to A− λIn not being
invertible. But A− λIn is invertible precisely when
det(A− λIn) 6= 0.
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§5.2 Similarity
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Let A and B be n× n matrices. A is similar to B if there exists an
invertible matrix P such that

P−1AP = B.

Theorem
Similar matrices have the same charpoly.

Proof.
Let P−1AP = B. Then

det(B−λIn) = det
(

P−1(A−λIn)P
)

= det(P−1) det(A−λIn) det(P).
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§5.2 Long-term behavior analysis

Let A =
[
.95 .03
.05 .97

]
, x0 =

[
.6
.4

]
, and xk+1 = Axk .

What is the long-term behavior of xk?

I Find the eigenvalues of A: λ1 = 1, λ2 = 23/25
I Find corresponding eigenvectors:

v1 =
[

1
5/3

]
, v2 =

[
1
−1

]

I Write x0 as a linear combination of v1, v2:

x0 = (3/8)v1 + (9/40)v2

I xk = Ak
(

(3/8)v1 + (9/40)v2︸ ︷︷ ︸
x0

)
= (3/8)λk

1v1 + (9/40)λk
2v2
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I Write x0 as a linear combination of v1, v2:

x0 = (3/8)v1 + (9/40)v2

I xk = Ak
(

(3/8)v1 + (9/40)v2︸ ︷︷ ︸
x0

)
= (3/8)λk

1v1 + (9/40)λk
2v2
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§5.2 Classwork

Find the eigenvalues of the following matrices:

1. A =
[

1 6
5 2

]

2. A =
[

1 −1
1 1

]

3. A =
[
−5 0

0 −5

]

4. A =

 1 3 3
−3 −5 −3

3 3 1


5. A =

−7 9 0
0 1 3
0 0 1





§5.2 Classwork Solutions

Find the eigenvalues of the following matrices:

1. A =
[

1 6
5 2

]
, charpoly(A) = (λ+ 4)(λ− 7)

2. A =
[

1 −1
1 1

]
, charpoly(A) = λ2 − 2λ+ 2

3. A =
[
−5 0

0 −5

]
, charpoly(A) = (λ+ 5)2

4. A =

 1 3 3
−3 −5 −3

3 3 1

, charpoly(A) = (λ− 1)(λ+ 2)2

5. A =

−7 9 0
0 1 3
0 0 1

, charpoly(A) = (λ+ 7)(λ− 1)2



§5.2 Multiplicity

Let A =

−7 9 0
0 1 3
0 0 1

, charpoly(A) = (λ+ 7)(λ− 1)2.

What is the dimension of the λ = 1 eigenspace? 1.

Let A =

 1 3 3
−3 −5 −3

3 3 1

, charpoly(A) = (λ− 1)(λ+ 2)2.

What is the dimension of the λ = −2 eigenspace? 2.

Both eigenvalues have algebraic multiplicity 2 but their
geometric multiplicities are not equal.
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