

Lecture 19

Math 22 Summer 2017 July 31, 2017

§5.1 Finish up

▶ §5.2 Characteristic polynomials

Let A be a triangular $n \times n$ matrix.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$. λ is an eigenvalue of A if and only if the null space of $A - \lambda I_n$ contains a nonzero vector.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$. λ is an eigenvalue of A if and only if the null space of $A - \lambda I_n$ contains a nonzero vector. Write out $A - \lambda I_n$ under the assumption that A is triangular to show that $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a free variable precisely when $\lambda = a_{kk}$ for some $k \leq n$.

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ for A.

Let A be an $n \times n$ matrix. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ for A. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a linearly independent set.

Let A be an $n \times n$ matrix. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ for A. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a linearly independent set.

We will prove this by contradiction.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent. Let p be the least index such that \mathbf{v}_{p+1} has this property.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent. Let p be the least index such that $\boldsymbol{v}_{{\scriptscriptstyle\mathcal{D}}+1}$ has this property. Then

 $\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p |$, with $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ independent.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

 $\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$, with $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ independent.

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

 $\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$, with $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ independent.

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

Now use that these are eigenvectors.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

 $\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$, with $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ independent.

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

Now use that these are eigenvectors. We get that

$$\lambda_{p+1}\mathbf{v}_{p+1} = c_1\lambda_1\mathbf{v}_1 + \cdots + c_p\lambda_p\mathbf{v}_p$$
.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it with all preceding vectors linearly independent. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

 $\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$, with $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ independent.

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

Now use that these are eigenvectors. We get that

$$\lambda_{p+1}\mathbf{v}_{p+1} = c_1\lambda_1\mathbf{v}_1 + \cdots + c_p\lambda_p\mathbf{v}_p$$
.

How can we use the boxed equations to get a contradiction?

Suppose A has $\lambda = 0$ as an eigenvalue?

Theorem

Theorem

Let A be a square $n \times n$ matrix.

Theorem

Let A be a square $n \times n$ matrix. The following are equivalent.

Theorem

Let A be a square $n \times n$ matrix. The following are equivalent.

(s) $\lambda = 0$ is not an eigenvalue of A.

Theorem

Let A be a square $n \times n$ matrix. The following are equivalent.

(s) $\lambda = 0$ is not an eigenvalue of A. (t) $det(A) \neq 0$.

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that det $(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that $det(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**. An eigenvalue of A corresponds to a root of the charpoly of A.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that $det(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**. An eigenvalue of A corresponds to a root of the charpoly of A. The multiplicity of the root is called the **algebraic multiplicity** of the eigenvalue.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that $det(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**. An eigenvalue of A corresponds to a root of the charpoly of A. The multiplicity of the root is called the **algebraic multiplicity** of the eigenvalue.

Proof.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that $det(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**. An eigenvalue of A corresponds to a root of the charpoly of A. The multiplicity of the root is called the **algebraic multiplicity** of the eigenvalue.

Proof.

 λ is an eigenvalue of A precisely when $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that $det(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**. An eigenvalue of A corresponds to a root of the charpoly of A. The multiplicity of the root is called the **algebraic multiplicity** of the eigenvalue.

Proof.

 λ is an eigenvalue of A precisely when $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a nontrivial solution. This is equivalent to $A - \lambda I_n$ not being invertible.

Let A be an $n \times n$ matrix. Let $\lambda \in \mathbb{R}$. λ is an eigenvalue of A if and only if λ satisfies the **characteristic equation**

$$\det(A - \lambda I_n) = 0.$$

Note that $det(A - \lambda I_n)$ is a polynomial in λ called the **characteristic polynomial**. An eigenvalue of A corresponds to a root of the charpoly of A. The multiplicity of the root is called the **algebraic multiplicity** of the eigenvalue.

Proof.

 λ is an eigenvalue of A precisely when $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a nontrivial solution. This is equivalent to $A - \lambda I_n$ not being invertible. But $A - \lambda I_n$ is invertible precisely when $\det(A - \lambda I_n) \neq 0$.

§5.2 Similarity

Definition

§5.2 Similarity

Definition

Let A and B be $n \times n$ matrices.

Let A and B be $n \times n$ matrices. A is **similar** to B if there exists an invertible matrix P such that

$$P^{-1}AP = B.$$

Let A and B be $n \times n$ matrices. A is **similar** to B if there exists an invertible matrix P such that

$$P^{-1}AP = B.$$

Theorem

Let A and B be $n \times n$ matrices. A is **similar** to B if there exists an invertible matrix P such that

$$P^{-1}AP = B.$$

Theorem

Similar matrices have the same charpoly.

Let A and B be $n \times n$ matrices. A is **similar** to B if there exists an invertible matrix P such that

$$P^{-1}AP = B.$$

Theorem

Similar matrices have the same charpoly.

Proof.

Let A and B be $n \times n$ matrices. A is **similar** to B if there exists an invertible matrix P such that

$$P^{-1}AP = B.$$

Theorem

Similar matrices have the same charpoly.

Proof.

Let $P^{-1}AP = B$.

Let A and B be $n \times n$ matrices. A is **similar** to B if there exists an invertible matrix P such that

$$P^{-1}AP = B.$$

Theorem

Similar matrices have the same charpoly.

Proof.

Let $P^{-1}AP = B$. Then $\det(B - \lambda I_n) = \det\left(P^{-1}(A - \lambda I_n)P\right) = \det(P^{-1})\det(A - \lambda I_n)\det(P).$

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

Find the eigenvalues of A:

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

Find the eigenvalues of A: $\lambda_1 = 1$, $\lambda_2 = 23/25$

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

- Find the eigenvalues of A: $\lambda_1 = 1$, $\lambda_2 = 23/25$
- Find corresponding eigenvectors:

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

- Find the eigenvalues of A: $\lambda_1 = 1$, $\lambda_2 = 23/25$
- Find corresponding eigenvectors:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 5/3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

- Find the eigenvalues of A: $\lambda_1 = 1$, $\lambda_2 = 23/25$
- Find corresponding eigenvectors:

$$\textbf{v}_1 = \begin{bmatrix} 1 \\ 5/3 \end{bmatrix}, \quad \textbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• Write \mathbf{x}_0 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$:

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

- Find the eigenvalues of A: $\lambda_1 = 1$, $\lambda_2 = 23/25$
- Find corresponding eigenvectors:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 5/3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

• Write \mathbf{x}_0 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$:

$$\mathbf{x}_0 = (3/8)\mathbf{v}_1 + (9/40)\mathbf{v}_2$$

Let
$$A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$, and $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
What is the long-term behavior of \mathbf{x}_k ?

- Find the eigenvalues of A: $\lambda_1 = 1$, $\lambda_2 = 23/25$
- Find corresponding eigenvectors:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 5/3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

• Write \mathbf{x}_0 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$:

$$\mathbf{x}_0 = (3/8)\mathbf{v}_1 + (9/40)\mathbf{v}_2$$

►
$$\mathbf{x}_k = A^k \Big(\underbrace{(3/8)\mathbf{v}_1 + (9/40)\mathbf{v}_2}_{\mathbf{x}_0} \Big) = (3/8)\lambda_1^k \mathbf{v}_1 + (9/40)\lambda_2^k \mathbf{v}_2$$

§5.2 Classwork

Find the eigenvalues of the following matrices:

1.
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

2. $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$
3. $A = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}$
4. $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$
5. $A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$

§5.2 Classwork Solutions

Find the eigenvalues of the following matrices:

1.
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 4)(\lambda - 7)$
2. $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, charpoly $(A) = \lambda^2 - 2\lambda + 2$
3. $A = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}$, charpoly $(A) = (\lambda + 5)^2$
4. $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$, charpoly $(A) = (\lambda - 1)(\lambda + 2)^2$
5. $A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

What is the dimension of the $\lambda = 1$ eigenspace?

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

What is the dimension of the $\lambda = 1$ eigenspace? 1.

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

What is the dimension of the $\lambda = 1$ eigenspace? 1.

Let
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda - 1)(\lambda + 2)^2$.

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

What is the dimension of the $\lambda = 1$ eigenspace? 1.

Let
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda - 1)(\lambda + 2)^2$.

What is the dimension of the $\lambda = -2$ eigenspace?

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

What is the dimension of the $\lambda = 1$ eigenspace? 1.

Let
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda - 1)(\lambda + 2)^2$.

What is the dimension of the $\lambda = -2$ eigenspace? 2.

Let
$$A = \begin{bmatrix} -7 & 9 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda + 7)(\lambda - 1)^2$.

What is the dimension of the $\lambda = 1$ eigenspace? 1.

Let
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
, charpoly $(A) = (\lambda - 1)(\lambda + 2)^2$.

What is the dimension of the $\lambda = -2$ eigenspace? 2.

Both eigenvalues have **algebraic multiplicity** 2 but their **geometric multiplicities** are not equal.