

Lecture 18

Math 22 Summer 2017 July 28, 2017

- §4.6 Rank and the IMT
- §5.1 Eigenvectors and eigenvalues

Let A be a square $n \times n$ matrix.

- (d) The matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (g) $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .

- (d) The matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (g) $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (m) The columns of A form a basis of \mathbb{R}^n .
- (n) $\operatorname{Col} A = \mathbb{R}^n$.
- (o) dim $\operatorname{Col} A = n$.
- (p) rank A = n.
- (q) Nul $A = \{0\}.$
- (r) dim Nul A = 0.

- (d) The matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (g) $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (m) The columns of A form a basis of \mathbb{R}^n .
- (n) $\operatorname{Col} A = \mathbb{R}^n$.
- (o) dim $\operatorname{Col} A = n$.
- (p) rank A = n.
- (q) Nul $A = \{0\}.$
- (r) dim Nul A = 0.

$$(m) \iff (e) \iff (h)$$

 $(g) \Rightarrow (n) \Rightarrow (o) \Rightarrow (p) \Rightarrow (r) \Rightarrow (q) \Rightarrow (d).$

§5.1 Definition of eigenvector and eigenvalue

§5.1 Definition of eigenvector and eigenvalue

Definition

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix. An **eigenvector** of A is a *nonzero* vector **x** in \mathbb{R}^n such that

 $A\mathbf{x} = \lambda \mathbf{x}, \quad \lambda \in \mathbb{R}.$

Let A be an $n \times n$ matrix. An **eigenvector** of A is a *nonzero* vector **x** in \mathbb{R}^n such that

$$A\mathbf{x} = \lambda \mathbf{x}, \quad \lambda \in \mathbb{R}.$$

An **eigenvalue** of A is a scalar $\lambda \in \mathbb{R}$ if there exists a *nonzero* vector **x** such that $A\mathbf{x} = \lambda \mathbf{x}$.

Let A be an $n \times n$ matrix. An **eigenvector** of A is a *nonzero* vector **x** in \mathbb{R}^n such that

$$A\mathbf{x} = \lambda \mathbf{x}, \quad \lambda \in \mathbb{R}.$$

An **eigenvalue** of A is a scalar $\lambda \in \mathbb{R}$ if there exists a *nonzero* vector **x** such that $A\mathbf{x} = \lambda \mathbf{x}$.

In the situation where $A\mathbf{x} = \lambda \mathbf{x}$ we say that \mathbf{x} is an eigenvector corresponding to λ .

Question: Can an eigenvalue have more than one eigenvector?

Question: Can an eigenvalue have more than one eigenvector?

Yes!

Question: Can an eigenvalue have more than one eigenvector?

Yes! Example?

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$.

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A.

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues?

7 1769

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

7 1762

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

Question: Can an eigenvector have more than one eigenvalue?

7 1762

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

 $\ensuremath{\textbf{Question:}}$ Can an eigenvector have more than one eigenvalue? No!

7 1762

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

 $\ensuremath{\textbf{Question:}}$ Can an eigenvector have more than one eigenvalue? No! Why?

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

Question: Can an eigenvector have more than one eigenvalue? No! Why?

Here are some nice animations to help visualize eigenvectors:

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

Question: Can an eigenvector have more than one eigenvalue? No! Why?

Here are some nice animations to help visualize eigenvectors:

https://www.youtube.com/playlist?list= PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Check that \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors for A. What are their corresponding eigenvalues? Can you find any other eigenvectors using \mathbf{u}_1 and \mathbf{u}_2 ?

Question: Can an eigenvector have more than one eigenvalue? No! Why?

Here are some nice animations to help visualize eigenvectors:

https://www.youtube.com/playlist?list= PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

https://commons.wikimedia.org/wiki/File: Eigenvectors-extended.gif#/media/File: Eigenvectors-extended.gif

§5.1 Finding eigenvectors

Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 as on the previous slide.

Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ as on the previous slide. Suppose we are told that 3 is an eigenvalue of A.

Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ as on the previous slide. Suppose we are told that 3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

1769

Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ as on the previous slide. Suppose we are told that 3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3\mathbf{x} = (3I_2)\mathbf{x}$.

Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ as on the previous slide. Suppose we are told that 3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3\mathbf{x} = (3l_2)\mathbf{x}$. Then $A\mathbf{x} = 3\mathbf{x}$ implies $(A - 3l_2)\mathbf{x} = \mathbf{0}$.

Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ as on the previous slide. Suppose we are told that 3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3\mathbf{x} = (3I_2)\mathbf{x}$. Then $A\mathbf{x} = 3\mathbf{x}$ implies $(A - 3I_2)\mathbf{x} = \mathbf{0}$. So what?

Well, first notice that $3\mathbf{x} = (3I_2)\mathbf{x}$. Then $A\mathbf{x} = 3\mathbf{x}$ implies $(A - 3I_2)\mathbf{x} = \mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A - 3I_2$.

Well, first notice that $3\mathbf{x} = (3I_2)\mathbf{x}$. Then $A\mathbf{x} = 3\mathbf{x}$ implies $(A - 3I_2)\mathbf{x} = \mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A - 3I_2$. Now,

$$A-3I_2=\left[\begin{array}{cc}-2&2\\0&0\end{array}\right].$$

Well, first notice that $3\mathbf{x} = (3I_2)\mathbf{x}$. Then $A\mathbf{x} = 3\mathbf{x}$ implies $(A - 3I_2)\mathbf{x} = \mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A - 3I_2$. Now,

$$A-3I_2=\left[\begin{array}{cc}-2&2\\0&0\end{array}\right].$$

Check that this matrix has a 1-dimensional nullspace spanned by \boldsymbol{u}_1 from the previous slide.

Well, first notice that $3\mathbf{x} = (3I_2)\mathbf{x}$. Then $A\mathbf{x} = 3\mathbf{x}$ implies $(A - 3I_2)\mathbf{x} = \mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A - 3I_2$. Now,

$$A-3I_2=\left[\begin{array}{cc}-2&2\\0&0\end{array}\right].$$

Check that this matrix has a 1-dimensional nullspace spanned by \boldsymbol{u}_1 from the previous slide.

This is our first example of an *eigenspace* which we now define...

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix. As we saw, **x** is an eigenvector for λ precisely when $\mathbf{x} \in \text{Nul}(A - \lambda I_n)$.

Let A be an $n \times n$ matrix. As we saw, **x** is an eigenvector for λ precisely when $\mathbf{x} \in \text{Nul}(A - \lambda I_n)$.

We define the **eigenspace** of A corresponding to λ to be $Nul(A - \lambda I_n)$.

Let A be an $n \times n$ matrix. As we saw, **x** is an eigenvector for λ precisely when $\mathbf{x} \in \text{Nul}(A - \lambda I_n)$.

We define the **eigenspace** of A corresponding to λ to be $Nul(A - \lambda I_n)$.

What are the eigenspaces for $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$?

1. Is
$$\mathbf{x} = \begin{bmatrix} -6\\5 \end{bmatrix}$$
 an eigenvector for $A = \begin{bmatrix} 1 & 6\\5 & 2 \end{bmatrix}$?
2. Is $\lambda = 3$ an eigenvalue of A ?
3. Let $B = \begin{bmatrix} 4 & -1 & 6\\2 & 1 & 6\\2 & -1 & 8 \end{bmatrix}$. The eigenvalues are $\lambda = 2, 9$. Find a basis for the eigenspace corresponding to $\lambda = 2$. What is t

basis for the eigenspace corresponding to $\lambda = 2$. What is the dimension of this space?

- 4. Using A and x defined above, compute $A^2 \mathbf{x}, A^3 \mathbf{x}, ..., A^k \mathbf{x}$.
- Using A defined above, write A λl₂ as a matrix (for arbitrary λ). Now compute det(A λl₂). For what values of λ is det(A λl₂) = 0?

Let A be a triangular $n \times n$ matrix.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$. λ is an eigenvalue of A if and only if the null space of $A - \lambda I_n$ contains a nonzero vector.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$. λ is an eigenvalue of A if and only if the null space of $A - \lambda I_n$ contains a nonzero vector. Write out $A - \lambda I_n$ under the assumption that A is triangular to show that $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a free variable precisely when $\lambda = a_{kk}$ for some $k \leq n$.

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$. λ is an eigenvalue of A if and only if the null space of $A - \lambda I_n$ contains a nonzero vector. Write out $A - \lambda I_n$ under the assumption that A is triangular to show that $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a free variable precisely when $\lambda = a_{kk}$ for some $k \leq n$.

Suppose A has $\lambda = 0$ as an eigenvalue?

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A = (a_{ij})$. λ is an eigenvalue of A if and only if the null space of $A - \lambda I_n$ contains a nonzero vector. Write out $A - \lambda I_n$ under the assumption that A is triangular to show that $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ has a free variable precisely when $\lambda = a_{kk}$ for some $k \leq n$.

Suppose A has $\lambda = 0$ as an eigenvalue? What can you say about the invertibility of A?

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ for A.

Let A be an $n \times n$ matrix. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ for A. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a linearly independent set.

Let A be an $n \times n$ matrix. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ for A. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a linearly independent set.

We will prove this by contradiction.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

 $\mathbf{v}_{p+1}=c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p\,.$

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p \, | \, .$$

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p \, | \, .$$

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

Now use that these are eigenvectors.

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p \, | \, .$$

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

Now use that these are eigenvectors. We get that

$$\lambda_{p+1}\mathbf{v}_{p+1}=c_1\lambda_1\mathbf{v}_1+\cdots+c_p\lambda_p\mathbf{v}_p\,.$$

For contradiction, suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let *p* be the least index such that \mathbf{v}_{p+1} has this property. Then

$$\mathbf{v}_{p+1} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p \, | \, .$$

Multiply by A on both sides to get

$$A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + \cdots + Ac_p\mathbf{v}_p = c_1A\mathbf{v}_1 + \cdots + c_pA\mathbf{v}_p.$$

Now use that these are eigenvectors. We get that

$$\lambda_{\rho+1}\mathbf{v}_{\rho+1}=c_1\lambda_1\mathbf{v}_1+\cdots+c_p\lambda_p\mathbf{v}_p.$$

How can we use the boxed equations to get a contradiction?

§5.1 Eigenvectors and difference equations

Suppose we have a difference equation:

$$\mathbf{x}_{k+1} = A\mathbf{x}_k, \quad k = 0, 1, 2, \dots$$

Suppose we have a difference equation:

$$\mathbf{x}_{k+1} = A\mathbf{x}_k, \quad k = 0, 1, 2, \dots$$

Moreover, suppose \mathbf{x}_0 is an eigenvector of A.

Suppose we have a difference equation:

$$\mathbf{x}_{k+1} = A\mathbf{x}_k, \quad k = 0, 1, 2, \dots$$

Moreover, suppose \mathbf{x}_0 is an eigenvector of A.

How can we use this to simplify the computation of \mathbf{x}_k for large values of k?