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Just for today

I §4.6 Rank and the IMT
I §5.1 Eigenvectors and eigenvalues



§4.6 Rank and the IMT

Let A be a square n × n matrix. The following are equivalent.

(d) The matrix equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) Ax = b has at least one solution for each b in Rn.
(h) The columns of A span Rn.

(m) The columns of A form a basis of Rn.
(n) ColA = Rn.
(o) dim ColA = n.
(p) rank A = n.
(q) Nul A = {0}.
(r) dim Nul A = 0.

(m) ⇐⇒ (e) ⇐⇒ (h)
(g)⇒ (n)⇒ (o)⇒ (p)⇒ (r)⇒ (q)⇒ (d).
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§5.1 Definition of eigenvector and eigenvalue

Definition
Let A be an n × n matrix. An eigenvector of A is a nonzero
vector x in Rn such that

Ax = λx, λ ∈ R.

An eigenvalue of A is a scalar λ ∈ R if there exists a nonzero
vector x such that Ax = λx.

In the situation where Ax = λx we say that x is an eigenvector
corresponding to λ.
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§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?

Yes! Example? Let A =
[

1 2
0 3

]
. Let u1 =

[
1
1

]
. Let u2 =

[
1
0

]
.

Check that u1 and u2 are eigenvectors for A.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using u1 and u2?

Question: Can an eigenvector have more than one eigenvalue?
No! Why?

Here are some nice animations to help visualize eigenvectors:

https://www.youtube.com/playlist?list=
PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

https://commons.wikimedia.org/wiki/File:
Eigenvectors-extended.gif#/media/File:
Eigenvectors-extended.gif

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://commons.wikimedia.org/wiki/File:Eigenvectors-extended.gif##/media/File:Eigenvectors-extended.gif
https://commons.wikimedia.org/wiki/File:Eigenvectors-extended.gif##/media/File:Eigenvectors-extended.gif
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§5.1 Finding eigenvectors

Let A =
[

1 2
0 3

]
as on the previous slide. Suppose we are told that

3 is an eigenvalue of A. How can we find all eigenvectors
corresponding to this eigenvalue?

Well, first notice that 3x = (3I2)x. Then Ax = 3x implies
(A− 3I2)x = 0. So what? The eigenvectors corresponding to the
eigenvalue 3 are precisely the vectors in the nullspace of A− 3I2.
Now,

A− 3I2 =
[
−2 2

0 0

]
.

Check that this matrix has a 1-dimensional nullspace spanned by
u1 from the previous slide.

This is our first example of an eigenspace which we now define...
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§5.1 Definition of eigenspace

Let A be an n × n matrix. As we saw, x is an eigenvector for λ
precisely when x ∈ Nul(A− λIn).

We define the eigenspace of A corresponding to λ to be
Nul(A− λIn).

What are the eigenspaces for A =
[

1 2
0 3

]
?
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§5.1 Classwork

1. Is x =
[
−6

5

]
an eigenvector for A =

[
1 6
5 2

]
?

2. Is λ = 3 an eigenvalue of A?

3. Let B =

 4 −1 6
2 1 6
2 −1 8

. The eigenvalues are λ = 2, 9. Find a

basis for the eigenspace corresponding to λ = 2. What is the
dimension of this space?

4. Using A and x defined above, compute A2x,A3x, ...,Akx.
5. Using A defined above, write A− λI2 as a matrix (for arbitrary
λ). Now compute det(A− λI2). For what values of λ is
det(A− λI2) = 0?



§5.1 Theorem 1

Theorem
Let A be a triangular n × n matrix. Then the eigenvalues of A are
the entries along the main diagonal of A.

Proof.
Let A = (aij). λ is an eigenvalue of A if and only if the null space
of A− λIn contains a nonzero vector. Write out A− λIn under the
assumption that A is triangular to show that (A− λIn)x = 0 has a
free variable precisely when λ = akk for some k ≤ n.

Suppose A has λ = 0 as an eigenvalue? What can you say about
the invertibility of A?
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§5.1 Theorem 2

Theorem
Let A be an n × n matrix. Let v1, . . . , vr be eigenvectors
corresponding to distinct eigenvalues λ1, . . . , λr for A. Then
{v1, . . . , vr} is a linearly independent set.

We will prove this by contradiction.
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§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose {v1, . . . , vr} is dependent. Then some
vector in this set is a linear combination of the vectors listed before
it. Let p be the least index such that vp+1 has this property. Then

vp+1 = c1v1 + · · ·+ cpvp .

Multiply by A on both sides to get

Avp+1 = Ac1v1 + · · ·+ Acpvp = c1Av1 + · · ·+ cpAvp.

Now use that these are eigenvectors. We get that

λp+1vp+1 = c1λ1v1 + · · ·+ cpλpvp .

How can we use the boxed equations to get a contradiction?
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§5.1 Eigenvectors and difference equations

Suppose we have a difference equation:

xk+1 = Axk , k = 0, 1, 2, . . . .

Moreover, suppose x0 is an eigenvector of A.

How can we use this to simplify the computation of xk for large
values of k?
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