Lecture 18

Math 22 Summer 2017
July 28, 2017

Just for today

- §4.6 Rank and the IMT
- §5.1 Eigenvectors and eigenvalues

§4.6 Rank and the IMT

§4.6 Rank and the IMT

Let A be a square $n \times n$ matrix.

§4.6 Rank and the IMT

Let A be a square $n \times n$ matrix. The following are equivalent.

§4.6 Rank and the IMT

Let A be a square $n \times n$ matrix. The following are equivalent.
(d) The matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.

§4.6 Rank and the IMT

Let A be a square $n \times n$ matrix. The following are equivalent.
(d) The matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(m) The columns of A form a basis of \mathbb{R}^{n}.
(n) $\operatorname{Col} A=\mathbb{R}^{n}$.
(o) $\operatorname{dim} \operatorname{Col} A=n$.
(p) $\operatorname{rank} A=n$.
(q) $\operatorname{Nul} A=\{\mathbf{0}\}$.
(r) $\operatorname{dim} \operatorname{Nul} A=0$.

§4.6 Rank and the IMT

Let A be a square $n \times n$ matrix. The following are equivalent.
(d) The matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(m) The columns of A form a basis of \mathbb{R}^{n}.
(n) $\operatorname{Col} A=\mathbb{R}^{n}$.
(o) $\operatorname{dim} \operatorname{Col} A=n$.
(p) $\operatorname{rank} A=n$.
(q) $\operatorname{Nul} A=\{\mathbf{0}\}$.
(r) $\operatorname{dim} \operatorname{Nul} A=0$.
$(m) \Longleftrightarrow(e) \Longleftrightarrow(h)$
$(g) \Rightarrow(n) \Rightarrow(o) \Rightarrow(p) \Rightarrow(r) \Rightarrow(q) \Rightarrow(d)$.

§5.1 Definition of eigenvector and eigenvalue

§5.1 Definition of eigenvector and eigenvalue

Definition

§5.1 Definition of eigenvector and eigenvalue

Definition

Let A be an $n \times n$ matrix.

§5.1 Definition of eigenvector and eigenvalue

Definition

Let A be an $n \times n$ matrix. An eigenvector of A is a nonzero vector \mathbf{x} in \mathbb{R}^{n} such that

$$
A \mathbf{x}=\lambda \mathbf{x}, \quad \lambda \in \mathbb{R}
$$

§5.1 Definition of eigenvector and eigenvalue

Definition

Let A be an $n \times n$ matrix. An eigenvector of A is a nonzero vector \mathbf{x} in \mathbb{R}^{n} such that

$$
A \mathbf{x}=\lambda \mathbf{x}, \quad \lambda \in \mathbb{R}
$$

An eigenvalue of A is a scalar $\lambda \in \mathbb{R}$ if there exists a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$.

§5.1 Definition of eigenvector and eigenvalue

Definition

Let A be an $n \times n$ matrix. An eigenvector of A is a nonzero vector \mathbf{x} in \mathbb{R}^{n} such that

$$
A \mathbf{x}=\lambda \mathbf{x}, \quad \lambda \in \mathbb{R}
$$

An eigenvalue of A is a scalar $\lambda \in \mathbb{R}$ if there exists a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$.

In the situation where $A \mathbf{x}=\lambda \mathbf{x}$ we say that \mathbf{x} is an eigenvector corresponding to λ.

§5.1 First examples

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes!

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example?

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$.

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}. What are their corresponding eigenvalues?

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?
Question: Can an eigenvector have more than one eigenvalue?

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?
Question: Can an eigenvector have more than one eigenvalue? No!

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?
Question: Can an eigenvector have more than one eigenvalue? No! Why?

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?
Question: Can an eigenvector have more than one eigenvalue? No! Why?

Here are some nice animations to help visualize eigenvectors:

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector?
Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?
Question: Can an eigenvector have more than one eigenvalue? No! Why?

Here are some nice animations to help visualize eigenvectors:
https://www.youtube.com/playlist?list= PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

§5.1 First examples

Question: Can an eigenvalue have more than one eigenvector? Yes! Example? Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Check that \mathbf{u}_{1} and \mathbf{u}_{2} are eigenvectors for \bar{A}. What are their corresponding eigenvalues?
Can you find any other eigenvectors using \mathbf{u}_{1} and \mathbf{u}_{2} ?
Question: Can an eigenvector have more than one eigenvalue? No! Why?

Here are some nice animations to help visualize eigenvectors:
https://www.youtube.com/playlist?list= PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://commons.wikimedia.org/wiki/File:
Eigenvectors-extended.gif\#/media/File:
Eigenvectors-extended.gif
§5.1 Finding eigenvectors

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide.

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A.

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$.

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$. Then $A \mathbf{x}=3 \mathbf{x}$ implies $\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$.

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$. Then $A \mathbf{x}=3 \mathbf{x}$ implies
$\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$. So what?

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$. Then $A \mathbf{x}=3 \mathbf{x}$ implies $\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A-3 I_{2}$.

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$. Then $A \mathbf{x}=3 \mathbf{x}$ implies $\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A-3 I_{2}$. Now,

$$
A-3 I_{2}=\left[\begin{array}{rr}
-2 & 2 \\
0 & 0
\end{array}\right] .
$$

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$. Then $A \mathbf{x}=3 \mathbf{x}$ implies $\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A-3 I_{2}$. Now,

$$
A-3 I_{2}=\left[\begin{array}{rr}
-2 & 2 \\
0 & 0
\end{array}\right]
$$

Check that this matrix has a 1-dimensional nullspace spanned by \mathbf{u}_{1} from the previous slide.

§5.1 Finding eigenvectors

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ as on the previous slide. Suppose we are told that
3 is an eigenvalue of A. How can we find all eigenvectors corresponding to this eigenvalue?

Well, first notice that $3 \mathbf{x}=\left(3 I_{2}\right) \mathbf{x}$. Then $A \mathbf{x}=3 \mathbf{x}$ implies $\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$. So what? The eigenvectors corresponding to the eigenvalue 3 are precisely the vectors in the nullspace of $A-3 I_{2}$. Now,

$$
A-3 I_{2}=\left[\begin{array}{rr}
-2 & 2 \\
0 & 0
\end{array}\right] .
$$

Check that this matrix has a 1-dimensional nullspace spanned by \mathbf{u}_{1} from the previous slide.

This is our first example of an eigenspace which we now define...

§5.1 Definition of eigenspace

§5.1 Definition of eigenspace

Let A be an $n \times n$ matrix.

§5.1 Definition of eigenspace

Let A be an $n \times n$ matrix. As we saw, \mathbf{x} is an eigenvector for λ precisely when $\mathbf{x} \in \operatorname{Nul}\left(A-\lambda I_{n}\right)$.

§5.1 Definition of eigenspace

Let A be an $n \times n$ matrix. As we saw, \mathbf{x} is an eigenvector for λ precisely when $\mathbf{x} \in \operatorname{Nul}\left(A-\lambda I_{n}\right)$.

We define the eigenspace of A corresponding to λ to be $\operatorname{Nul}\left(A-\lambda I_{n}\right)$.

§5.1 Definition of eigenspace

Let A be an $n \times n$ matrix. As we saw, \mathbf{x} is an eigenvector for λ precisely when $\mathbf{x} \in \operatorname{Nul}\left(A-\lambda I_{n}\right)$.

We define the eigenspace of A corresponding to λ to be $\operatorname{Nul}\left(A-\lambda I_{n}\right)$.
What are the eigenspaces for $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$?

§5.1 Classwork

1. Is $\mathbf{x}=\left[\begin{array}{r}-6 \\ 5\end{array}\right]$ an eigenvector for $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$?
2. Is $\lambda=3$ an eigenvalue of A ?
3. Let $B=\left[\begin{array}{rrr}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. The eigenvalues are $\lambda=2$, 9 . Find a basis for the eigenspace corresponding to $\lambda=2$. What is the dimension of this space?
4. Using A and \mathbf{x} defined above, compute $A^{2} \mathbf{x}, A^{3} \mathbf{x}, \ldots, A^{k} \mathbf{x}$.
5. Using A defined above, write $A-\lambda I_{2}$ as a matrix (for arbitrary $\lambda)$. Now compute $\operatorname{det}\left(A-\lambda I_{2}\right)$. For what values of λ is $\operatorname{det}\left(A-\lambda I_{2}\right)=0$?
§5.1 Theorem 1

§5.1 Theorem 1

Theorem

§5.1 Theorem 1

Theorem
Let A be a triangular $n \times n$ matrix.

§5.1 Theorem 1

Theorem
Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

§5.1 Theorem 1

Theorem
Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

§5.1 Theorem 1

Theorem

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A=\left(a_{i j}\right)$.

§5.1 Theorem 1

Theorem

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A=\left(a_{i j}\right) . \lambda$ is an eigenvalue of A if and only if the null space of $A-\lambda I_{n}$ contains a nonzero vector.

§5.1 Theorem 1

Theorem

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A=\left(a_{i j}\right) . \lambda$ is an eigenvalue of A if and only if the null space of $A-\lambda I_{n}$ contains a nonzero vector. Write out $A-\lambda I_{n}$ under the assumption that A is triangular to show that $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ has a free variable precisely when $\lambda=a_{k k}$ for some $k \leq n$.

§5.1 Theorem 1

Theorem

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A=\left(a_{i j}\right) . \lambda$ is an eigenvalue of A if and only if the null space of $A-\lambda I_{n}$ contains a nonzero vector. Write out $A-\lambda I_{n}$ under the assumption that A is triangular to show that $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ has a free variable precisely when $\lambda=a_{k k}$ for some $k \leq n$.

Suppose A has $\lambda=0$ as an eigenvalue?

§5.1 Theorem 1

Theorem

Let A be a triangular $n \times n$ matrix. Then the eigenvalues of A are the entries along the main diagonal of A.

Proof.

Let $A=\left(a_{i j}\right) . \lambda$ is an eigenvalue of A if and only if the null space of $A-\lambda I_{n}$ contains a nonzero vector. Write out $A-\lambda I_{n}$ under the assumption that A is triangular to show that $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ has a free variable precisely when $\lambda=a_{k k}$ for some $k \leq n$.

Suppose A has $\lambda=0$ as an eigenvalue? What can you say about the invertibility of A ?

§5.1 Theorem 2

§5.1 Theorem 2

Theorem

§5.1 Theorem 2

Theorem
Let A be an $n \times n$ matrix.

§5.1 Theorem 2

Theorem

Let A be an $n \times n$ matrix. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ for A.

§5.1 Theorem 2

Theorem

Let A be an $n \times n$ matrix. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ for A. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is a linearly independent set.

§5.1 Theorem 2

Theorem

Let A be an $n \times n$ matrix. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ for A. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is a linearly independent set.

We will prove this by contradiction.

§5.1 Proof of Theorem 2

Proof.

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent.

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it.

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property.

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$
\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$
\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Multiply by A on both sides to get

$$
A \mathbf{v}_{p+1}=A c_{1} \mathbf{v}_{1}+\cdots+A c_{p} \mathbf{v}_{p}=c_{1} A \mathbf{v}_{1}+\cdots+c_{p} A \mathbf{v}_{p}
$$

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$
\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Multiply by A on both sides to get

$$
A \mathbf{v}_{p+1}=A c_{1} \mathbf{v}_{1}+\cdots+A c_{p} \mathbf{v}_{p}=c_{1} A \mathbf{v}_{1}+\cdots+c_{p} A \mathbf{v}_{p}
$$

Now use that these are eigenvectors.

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$
\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p} .
$$

Multiply by A on both sides to get

$$
A \mathbf{v}_{p+1}=A c_{1} \mathbf{v}_{1}+\cdots+A c_{p} \mathbf{v}_{p}=c_{1} A \mathbf{v}_{1}+\cdots+c_{p} A \mathbf{v}_{p}
$$

Now use that these are eigenvectors. We get that

$$
\lambda_{p+1} \mathbf{v}_{p+1}=c_{1} \lambda_{1} \mathbf{v}_{1}+\cdots+c_{p} \lambda_{p} \mathbf{v}_{p} \text {. }
$$

§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is dependent. Then some vector in this set is a linear combination of the vectors listed before it. Let p be the least index such that \mathbf{v}_{p+1} has this property. Then

$$
\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Multiply by A on both sides to get

$$
A \mathbf{v}_{p+1}=A c_{1} \mathbf{v}_{1}+\cdots+A c_{p} \mathbf{v}_{p}=c_{1} A \mathbf{v}_{1}+\cdots+c_{p} A \mathbf{v}_{p}
$$

Now use that these are eigenvectors. We get that

$$
\lambda_{p+1} \mathbf{v}_{p+1}=c_{1} \lambda_{1} \mathbf{v}_{1}+\cdots+c_{p} \lambda_{p} \mathbf{v}_{p} \text {. }
$$

How can we use the boxed equations to get a contradiction?

§5.1 Eigenvectors and difference equations

§5.1 Eigenvectors and difference equations

Suppose we have a difference equation:

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}, \quad k=0,1,2, \ldots
$$

§5.1 Eigenvectors and difference equations

Suppose we have a difference equation:

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}, \quad k=0,1,2, \ldots
$$

Moreover, suppose \mathbf{x}_{0} is an eigenvector of A.

§5.1 Eigenvectors and difference equations

Suppose we have a difference equation:

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}, \quad k=0,1,2, \ldots
$$

Moreover, suppose \mathbf{x}_{0} is an eigenvector of A.
How can we use this to simplify the computation of \mathbf{x}_{k} for large values of k ?

