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Just for today

I §4.4 Finish up
I §4.5 Dimension



The matrix of a linear transformation revisited

Consider a linear transformation T : V →W .

We can encode the map T in a matrix just like we did for
T : Rn → Rm with the standard matrix.

Pick a basis B = {b1, . . . , bn} of V
Pick a basis C = {c1, . . . , cm} of W .

We define the matrix of T relative to the bases B and C,
denoted C[T ]B by

C[T ]B =
[

[T (b1)]C [T (b2)]C · · · [T (bn)]C
]

.

How does this relate to coordinate vectors?
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§4.4 Change of coordinates

We can use the matrix of a linear transformation to write
coordinate vectors with respect to different bases (i.e. to change
coordinates). The key property of C[T ]B is that

[T (x)]C = C[T ]B[x]B

Thus, if B and C are bases of the same vector space V , then we
can relate the coordinate vectors of any element of x using the
identity linear transformation id : V → V in the following way.

[x]C = C[id]B[x]B .

The matrix C[id]B is called the change of coordinates matrix
from B to C. Let’s see how this works in our classwork example
(back page)! https://math.dartmouth.edu/˜m22x17/
section2lectures/classwork15.pdf

https://math.dartmouth.edu/~m22x17/section2lectures/classwork15.pdf
https://math.dartmouth.edu/~m22x17/section2lectures/classwork15.pdf
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§4.4 Example (derivative)

Let T : P3 → P2 be defined by T (p) = p′ (the first derivative).
Let B = {1, t, t2, t3} be the standard basis of P3.
Let C = {1, t, t2} be the standard basis of P2.
What is the matrix C[T ]B? Well,

C[T ]B =
[

[T (1)]C [T (t)]C [T (t2)]C [T (t3)]C
]

=

 0 1 0 0
0 0 2 0
0 0 0 3

 .
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§4.4 Example (derivative) continued

Let’s use the matrix of the derivative (computed on the
previous slide) to verify something we already know namely

T (2 + 3t + 4t2 + 5t3).

Take B, C the standard bases in the domain and codomain
respectively. Then[

T (2 + 3t + 4t2 + 5t3)
]

C
= C[T ]B[2 + 3t + 4t2 + 5t3]B

which is equal to

 0 1 0 0
0 0 2 0
0 0 0 3




2
3
4
5

 =

 3
8

15


and T (2 + 3t + 4t2 + 5t3) = 3 + 8t + 15t2.
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§4.5 Theorem 9

Theorem
Let V be a vector space with basis B = {b1, . . . , bn}. Then any
set of p vectors in V with p > n is linearly dependent.

Proof.
Map to coordinates and use the same fact about Rn to get a
dependence relation.
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§4.5 Theorem 10

Theorem
Let V be a vector space with a basis B = {b1, . . . , bn}. Then
every basis of V has exactly n vectors.

Proof.
Let B′ be another basis of V . By the previous theorem we have
the inequalities:

#B ≤ #B′

#B′ ≤ #B.
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§4.5 Definition of dimension

Definition
The dimension of {0} is 0.

Suppose V 6= {0}. Let B be a basis of V .

If #B is finite, then the dimension of V is #B.
If #B is infinite, then the dimension of V is infinite as well.

We denote the dimension of V by dim V .

Examples? What about subspaces?
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§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V . Any
linearly indpendent set in H can be extended to a basis for H.
Moreover, H is finite-dimensional with dimension at most dim V .

Proof.
Let S be a linearly independent set in H. If S spans H then we are
done. If not, then there exists u1 ∈ H that is not in the span of S.
Append u1 to S. Prove that the set S together with this new
element u1 is linearly independent. Iterate this process if necessary.
By finite-dimensionality of V , this process terminates in a finite
number of steps.

Note that this proof works in the infinite-dimensional case as well,
but requires Zorn’s Lemma.
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By finite-dimensionality of V , this process terminates in a finite
number of steps.

Note that this proof works in the infinite-dimensional case as well,
but requires Zorn’s Lemma.
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Theorem
Let V be a vector space of dimension p ≥ 1. Any set of p vectors
in V that is linearly independent is automagically a basis for V .
Any set of p vectors in V that spans V is automagically a basis for
V .

Proof.
Corollary of previous theorem and the spanning set theorem.
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§4.5 Dimensions of Nul A and ColA

We have seen previously how to construct bases for Nul A and
ColA explicitly.

However, if we just want to compute their dimensions, then the
situation is even easier.

Theorem
The dimension of Nul A is the number of free variables in the
equation Ax = 0.

The dimension of ColA is the number of pivot columns in A.

What’s the proof?
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§4.5 Classwork

Find the dimension of the subspace H of R3 defined by

H =


 x

y
z

 :
x + y = 0
y + z = 0
x − z = 0

 .

Solution: First why is H a subspace? Because H = Nul A for

A =

 1 1 0
0 1 1
1 0 −1

 .

Now, how does this tell us the dimension of H?
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