Lecture 16

Math 22 Summer 2017
July 24, 2017

Just for today

- §4.4 Finish up
- §4.5 Dimension

The matrix of a linear transformation revisited

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

Pick a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V
Pick a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of W.

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

Pick a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V
Pick a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of W.
We define the matrix of T relative to the bases \mathcal{B} and \mathcal{C}, denoted $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ by

$$
{ }_{\mathcal{C}}[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}} \cdots\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}\right] .
$$

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

Pick a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V
Pick a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of W.
We define the matrix of T relative to the bases \mathcal{B} and \mathcal{C}, denoted $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ by

$$
{ }_{\mathcal{C}}[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}} \cdots\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}\right] .
$$

How does this relate to coordinate vectors?

§4.4 Change of coordinates

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates).

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V,

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$
[\mathbf{x}]_{\mathcal{C}}=\mathcal{C}[\mathrm{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$
[\mathbf{x}]_{\mathcal{C}}={ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

The matrix ${ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}$ is called the change of coordinates matrix from \mathcal{B} to \mathcal{C}.

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$
[\mathbf{x}]_{\mathcal{C}}=\mathcal{C}[\mathrm{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

The matrix $\mathcal{C}_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}$ is called the change of coordinates matrix from \mathcal{B} to \mathcal{C}. Let's see how this works in our classwork example (back page)! https://math.dartmouth.edu/~m22x17/ section2lectures/classwork15.pdf

§4.4 Example (derivative)

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.
Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}^{2}.

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.
Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}^{2}.
What is the matrix $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$?

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.
Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}^{2}.
What is the matrix $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$? Well,

$$
\mathcal{C}^{[}[T]_{\mathcal{B}}=\left[[T(1)]_{\mathcal{C}}[T(t)]_{\mathcal{C}}\left[T\left(t^{2}\right)\right]_{\mathcal{C}}\left[T\left(t^{3}\right)\right]_{\mathcal{C}}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

§4.4 Example (derivative) continued

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively.

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

which is equal to

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

which is equal to

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
3 \\
8 \\
15
\end{array}\right]
$$

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{c}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

which is equal to

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
3 \\
8 \\
15
\end{array}\right]
$$

and $T\left(2+3 t+4 t^{2}+5 t^{3}\right)=3+8 t+15 t^{2}$.

§4.5 Theorem 9

§4.5 Theorem 9

Theorem

§4.5 Theorem 9

Theorem

Let V be a vector space with basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$.

§4.5 Theorem 9

Theorem

Let V be a vector space with basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then any set of p vectors in V with $p>n$ is linearly dependent.

§4.5 Theorem 9

Theorem

Let V be a vector space with basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then any set of p vectors in V with $p>n$ is linearly dependent.

Proof.

§4.5 Theorem 9

Theorem

Let V be a vector space with basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then any set of p vectors in V with $p>n$ is linearly dependent.

Proof.

Map to coordinates and use the same fact about \mathbb{R}^{n} to get a dependence relation.

§4.5 Theorem 10

§4.5 Theorem 10

Theorem

§4.5 Theorem 10

Theorem
Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$.

§4.5 Theorem 10

Theorem
Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then every basis of V has exactly n vectors.

§4.5 Theorem 10

Theorem
Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then every basis of V has exactly n vectors.

Proof.

§4.5 Theorem 10

Theorem

Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then every basis of V has exactly n vectors.

Proof.

Let \mathcal{B}^{\prime} be another basis of V.

§4.5 Theorem 10

Theorem

Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then every basis of V has exactly n vectors.

Proof.

Let \mathcal{B}^{\prime} be another basis of V. By the previous theorem we have the inequalities:

§4.5 Theorem 10

Theorem

Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Then every basis of V has exactly n vectors.

Proof.

Let \mathcal{B}^{\prime} be another basis of V. By the previous theorem we have the inequalities:

$$
\begin{aligned}
& \# \mathcal{B} \leq \# \mathcal{B}^{\prime} \\
& \# \mathcal{B}^{\prime} \leq \# \mathcal{B}
\end{aligned}
$$

§4.5 Definition of dimension

§4.5 Definition of dimension

Definition

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$.

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$. Let \mathcal{B} be a basis of V.

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$. Let \mathcal{B} be a basis of V.
If $\# \mathcal{B}$ is finite, then the dimension of V is $\# \mathcal{B}$.

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$. Let \mathcal{B} be a basis of V.
If $\# \mathcal{B}$ is finite, then the dimension of V is $\# \mathcal{B}$.
If $\# \mathcal{B}$ is infinite, then the dimension of V is infinite as well.

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$. Let \mathcal{B} be a basis of V.
If $\# \mathcal{B}$ is finite, then the dimension of V is $\# \mathcal{B}$.
If $\# \mathcal{B}$ is infinite, then the dimension of V is infinite as well.
We denote the dimension of V by $\operatorname{dim} V$.

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$. Let \mathcal{B} be a basis of V.
If $\# \mathcal{B}$ is finite, then the dimension of V is $\# \mathcal{B}$.
If $\# \mathcal{B}$ is infinite, then the dimension of V is infinite as well.
We denote the dimension of V by $\operatorname{dim} V$.
Examples?

§4.5 Definition of dimension

Definition

The dimension of $\{\mathbf{0}\}$ is 0 .
Suppose $V \neq\{\mathbf{0}\}$. Let \mathcal{B} be a basis of V.
If $\# \mathcal{B}$ is finite, then the dimension of V is $\# \mathcal{B}$.
If $\# \mathcal{B}$ is infinite, then the dimension of V is infinite as well.
We denote the dimension of V by $\operatorname{dim} V$.
Examples? What about subspaces?

§4.5 Theorem 11

§4.5 Theorem 11

Theorem

§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V.

§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H.

§4.5 Theorem 11

Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

Let S be a linearly independent set in H.

§4.5 Theorem 11

Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

Let S be a linearly independent set in H. If S spans H then we are done.

§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

Let S be a linearly independent set in H. If S spans H then we are done. If not, then there exists $\mathbf{u}_{1} \in H$ that is not in the span of S.

§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

Let S be a linearly independent set in H. If S spans H then we are done. If not, then there exists $\mathbf{u}_{1} \in H$ that is not in the span of S. Append \mathbf{u}_{1} to S.

§4.5 Theorem 11

Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

Let S be a linearly independent set in H. If S spans H then we are done. If not, then there exists $\mathbf{u}_{1} \in H$ that is not in the span of S. Append \mathbf{u}_{1} to S. Prove that the set S together with this new element \mathbf{u}_{1} is linearly independent.

§4.5 Theorem 11

Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.

Let S be a linearly independent set in H. If S spans H then we are done. If not, then there exists $\mathbf{u}_{1} \in H$ that is not in the span of S. Append \mathbf{u}_{1} to S. Prove that the set S together with this new element \mathbf{u}_{1} is linearly independent. Iterate this process if necessary.

§4.5 Theorem 11

Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.
Let S be a linearly independent set in H. If S spans H then we are done. If not, then there exists $\mathbf{u}_{1} \in H$ that is not in the span of S. Append \mathbf{u}_{1} to S. Prove that the set S together with this new element \mathbf{u}_{1} is linearly independent. Iterate this process if necessary. By finite-dimensionality of V, this process terminates in a finite number of steps.

§4.5 Theorem 11

Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly indpendent set in H can be extended to a basis for H. Moreover, H is finite-dimensional with dimension at most $\operatorname{dim} V$.

Proof.
Let S be a linearly independent set in H. If S spans H then we are done. If not, then there exists $\mathbf{u}_{1} \in H$ that is not in the span of S. Append \mathbf{u}_{1} to S. Prove that the set S together with this new element \mathbf{u}_{1} is linearly independent. Iterate this process if necessary. By finite-dimensionality of V, this process terminates in a finite number of steps.

Note that this proof works in the infinite-dimensional case as well, but requires Zorn's Lemma.

§4.5 Theorem 12

§4.5 Theorem 12

Theorem

§4.5 Theorem 12

Theorem

Let V be a vector space of dimension $p \geq 1$.

§4.5 Theorem 12

Theorem

Let V be a vector space of dimension $p \geq 1$. Any set of p vectors in V that is linearly independent is automagically a basis for V.

§4.5 Theorem 12

Theorem

Let V be a vector space of dimension $p \geq 1$. Any set of p vectors in V that is linearly independent is automagically a basis for V. Any set of p vectors in V that spans V is automagically a basis for V.

§4.5 Theorem 12

Theorem

Let V be a vector space of dimension $p \geq 1$. Any set of p vectors in V that is linearly independent is automagically a basis for V. Any set of p vectors in V that spans V is automagically a basis for V.

Proof.

§4.5 Theorem 12

Theorem

Let V be a vector space of dimension $p \geq 1$. Any set of p vectors in V that is linearly independent is automagically a basis for V. Any set of p vectors in V that spans V is automagically a basis for V.

Proof.

Corollary of previous theorem and the spanning set theorem.

§4.5 Dimensions of Nul A and $\operatorname{Col} A$

§4.5 Dimensions of Nul A and $\operatorname{Col} A$

We have seen previously how to construct bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ explicitly.

§4.5 Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$

We have seen previously how to construct bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ explicitly.

However, if we just want to compute their dimensions, then the situation is even easier.

§4.5 Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$

We have seen previously how to construct bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ explicitly.

However, if we just want to compute their dimensions, then the situation is even easier.

Theorem

§4.5 Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$

We have seen previously how to construct bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ explicitly.

However, if we just want to compute their dimensions, then the situation is even easier.

Theorem
The dimension of $\mathrm{Nul} A$ is the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$.

§4.5 Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$

We have seen previously how to construct bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ explicitly.

However, if we just want to compute their dimensions, then the situation is even easier.

Theorem
The dimension of $\mathrm{Nul} A$ is the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$.

The dimension of $\mathrm{Col} A$ is the number of pivot columns in A.

§4.5 Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$

We have seen previously how to construct bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ explicitly.

However, if we just want to compute their dimensions, then the situation is even easier.

Theorem

The dimension of $\mathrm{Nul} A$ is the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$.

The dimension of $\mathrm{Col} A$ is the number of pivot columns in A.
What's the proof?
§4.5 Classwork

§4.5 Classwork

Find the dimension of the subspace H of \mathbb{R}^{3} defined by

$$
H=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
x+y=0 \\
y+z=0 \\
x-z=0
\end{array}\right\} .
$$

§4.5 Classwork

Find the dimension of the subspace H of \mathbb{R}^{3} defined by

$$
H=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
x+y=0 \\
: y+z=0 \\
x-z=0
\end{array}\right\} .
$$

Solution:

§4.5 Classwork

Find the dimension of the subspace H of \mathbb{R}^{3} defined by

$$
H=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
x+y=0 \\
y+z=0 \\
x-z=0
\end{array}\right\} .
$$

Solution: First why is H a subspace?

§4.5 Classwork

Find the dimension of the subspace H of \mathbb{R}^{3} defined by

$$
H=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
x+y=0 \\
: y+z=0 \\
x-z=0
\end{array}\right\} .
$$

Solution: First why is H a subspace? Because $H=\operatorname{Nul} A$ for

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

§4.5 Classwork

Find the dimension of the subspace H of \mathbb{R}^{3} defined by

$$
H=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
x+y=0 \\
: y+z=0 \\
x-z=0
\end{array}\right\} .
$$

Solution: First why is H a subspace? Because $H=\operatorname{Nul} A$ for

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Now, how does this tell us the dimension of H ?

