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Just for today

§4.4 Coordinates

» What are coordinates for an element of a vector space?
» How can coordinates be represented geometrically?

» Coordinate maps V — R" and isomorphism
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Theorem

Let V' be a vector space. Let B = {bi,...,b,} be a basis for V.
For every x € V, there are unique scalars ci, ..., c, such that

x =cb1 + -+ c,bp,.

Proof.

Consider another representation and use independence. O
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Definition

Let x live in a vector space V. Let B = {by,...,b,} be a basis for
V. The coordinates of x relative to the basis 5 are the unique
scalars ¢y, . .., ¢, obtained by writing x in terms of B.

The vector of scalars is denoted [x]z. We call [x|s the coordinate
vector of x. Note that it depends on the basis!

The map V — R” defined by x — [x]5 is called a coordinate
map.



§4.4 Classwork

Let's see how this works in a concrete example:

https://math.dartmouth.edu/~m22x17/section2lectures/
classworkl5.pdf

Front page only for now!


https://math.dartmouth.edu/~m22x17/section2lectures/classwork15.pdf
https://math.dartmouth.edu/~m22x17/section2lectures/classwork15.pdf
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Using coordinates we can now see that all (finite dimensional)
vector spaces “look like R in the following sense.
Theorem

Let B ={by,...,b,} be a basis of a vector space V. Then the
map to coordinates x — [X] is linear, one-to-one, and onto. A
map of this type is called an isomorphism.

What's the proof?
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§4.4 Example

Consider Ps3, the vector space of polynomials (in t) with degree at
most 3.

What is a basis for this space?

How does the previous theorem apply to P37
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The matrix of a linear transformation revisited

Consider a linear transformation T : V — W.

We can encode the map T in a matrix just like we did for
T :R" — R™ with the standard matrix.

Pick a basis B = {by,...,b,} of V
Pick a basis C = {c1,...,cm} of W.

We define the matrix of T relative to the bases 55 and C,
denoted [ T]3 by

el Tls = [[T(bo)le [T(b2)le - [T(ba)lc |-

How does this relate to coordinate vectors?
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§4.4 Change of coordinates

We can use the matrix of a linear transformation to write
coordinate vectors with respect to different bases (i.e. to change
coordinates). The key property of ¢[ T3 is that

[T(X¥)]e = c[T]slxs

Thus, if B and C are bases of the same vector space V, then we
can relate the coordinate vectors of any element of x using the
identity linear transformation id : V — V in the following way.

[Xlc = clid]s[x]5 |

The matrix ¢[id]; is called the change of coordinates matrix
from B to C. Let's see how this works in our classwork example
(back page)!
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§4.4 Example (derivative)

Let T : P3 — P, be defined by T(p) = p’ (the first derivative).
Let B = {1,t,t2 t3} be the standard basis of P3.

Let C = {1,t,t°} be the standard basis of P?.

What is the matrix ¢[T]5? Well,

0100
el Tls = [ [T)e [T(0)le [T(R)e [T(H)e| = | 0020
0003
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respectively. Then
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0100 § 3
0020 al = 8
0003 5 15



§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the 765
previous slide) to verify something we already know namely

T(2+ 3t + 4t° + 5¢3).

Take B, C the standard bases in the domain and codomain
respectively. Then

[T(z + 3t + 482 + 5t3)]c = ¢[T]5[2 + 3t + 4t + 5¢%]5

which is equal to

0100 § 3
0020 al = 8
0003 5 15

and T(2+ 3t +4t> +5t3) = 3+ 8t + 15¢2.



