Lecture 15

Math 22 Summer 2017
July 21, 2017

Just for today

§4.4 Coordinates

- What are coordinates for an element of a vector space?
- How can coordinates be represented geometrically?
- Coordinate maps $V \rightarrow \mathbb{R}^{n}$ and isomorphism

§4.4 Theorem 7 (unique representation on a basis)

§4.4 Theorem 7 (unique representation on a basis)

Theorem

§4.4 Theorem 7 (unique representation on a basis)

Theorem

Let V be a vector space.

§4.4 Theorem 7 (unique representation on a basis)

Theorem

Let V be a vector space. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V.

§4.4 Theorem 7 (unique representation on a basis)

Theorem

Let V be a vector space. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. For every $\mathbf{x} \in V$, there are unique scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} .
$$

§4.4 Theorem 7 (unique representation on a basis)

Theorem

Let V be a vector space. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. For every $\mathbf{x} \in V$, there are unique scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} .
$$

Proof.

§4.4 Theorem 7 (unique representation on a basis)

Theorem

Let V be a vector space. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. For every $\mathbf{x} \in V$, there are unique scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} .
$$

Proof.

Consider another representation and use independence.

§4.4 Definition of coordinates relative to a basis

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V.

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V.

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. The coordinates of x relative to the basis \mathcal{B} are the unique scalars c_{1}, \ldots, c_{n} obtained by writing \mathbf{x} in terms of \mathcal{B}.

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. The coordinates of \mathbf{x} relative to the basis \mathcal{B} are the unique scalars c_{1}, \ldots, c_{n} obtained by writing \mathbf{x} in terms of \mathcal{B}.

The vector of scalars is denoted $[\mathbf{x}]_{\mathcal{B}}$.

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. The coordinates of x relative to the basis \mathcal{B} are the unique scalars c_{1}, \ldots, c_{n} obtained by writing \mathbf{x} in terms of \mathcal{B}.

The vector of scalars is denoted $[\mathbf{x}]_{\mathcal{B}}$. We call $[\mathbf{x}]_{\mathcal{B}}$ the coordinate vector of x.

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. The coordinates of x relative to the basis \mathcal{B} are the unique scalars c_{1}, \ldots, c_{n} obtained by writing \mathbf{x} in terms of \mathcal{B}.

The vector of scalars is denoted $[\mathbf{x}]_{\mathcal{B}}$. We call $[\mathbf{x}]_{\mathcal{B}}$ the coordinate vector of \mathbf{x}. Note that it depends on the basis!

§4.4 Definition of coordinates relative to a basis

Definition

Let \mathbf{x} live in a vector space V. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. The coordinates of \mathbf{x} relative to the basis \mathcal{B} are the unique scalars c_{1}, \ldots, c_{n} obtained by writing \mathbf{x} in terms of \mathcal{B}.

The vector of scalars is denoted $[\mathbf{x}]_{\mathcal{B}}$. We call $[\mathbf{x}]_{\mathcal{B}}$ the coordinate vector of \mathbf{x}. Note that it depends on the basis!

The map $V \rightarrow \mathbb{R}^{n}$ defined by $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is called a coordinate map.

§4.4 Classwork

Let's see how this works in a concrete example:
https://math.dartmouth.edu/~m22x17/section2lectures/ classwork15.pdf

Front page only for now!

§4.4 Theorem 8

§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional) vector spaces "look like $\mathbb{R}^{n "}$ in the following sense.

§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional) vector spaces "look like $\mathbb{R}^{n "}$ in the following sense.

Theorem

§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional) vector spaces "look like $\mathbb{R}^{n "}$ in the following sense.

Theorem
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of a vector space V.

§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional) vector spaces "look like $\mathbb{R}^{n "}$ in the following sense.

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of a vector space V. Then the map to coordinates $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is linear, one-to-one, and onto.

§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional) vector spaces "look like $\mathbb{R}^{n "}$ in the following sense.

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of a vector space V. Then the map to coordinates $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is linear, one-to-one, and onto. A map of this type is called an isomorphism.

§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional) vector spaces "look like $\mathbb{R}^{n "}$ in the following sense.

Theorem
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of a vector space V. Then the map to coordinates $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is linear, one-to-one, and onto. A map of this type is called an isomorphism.

What's the proof?

§4.4 Example

§4.4 Example

Consider \mathbb{P}_{3}, the vector space of polynomials (in t) with degree at most 3.

§4.4 Example

Consider \mathbb{P}_{3}, the vector space of polynomials (in t) with degree at most 3.

What is a basis for this space?

§4.4 Example

Consider \mathbb{P}_{3}, the vector space of polynomials (in t) with degree at most 3.

What is a basis for this space?
How does the previous theorem apply to \mathbb{P}_{3} ?

The matrix of a linear transformation revisited

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

Pick a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V
Pick a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of W.

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

Pick a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V
Pick a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of W.
We define the matrix of T relative to the bases \mathcal{B} and \mathcal{C}, denoted $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ by

$$
{ }_{\mathcal{C}}[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}} \cdots\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}\right] .
$$

The matrix of a linear transformation revisited

Consider a linear transformation $T: V \rightarrow W$.
We can encode the map T in a matrix just like we did for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with the standard matrix.

Pick a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V
Pick a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of W.
We define the matrix of T relative to the bases \mathcal{B} and \mathcal{C}, denoted $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ by

$$
{ }_{\mathcal{C}}[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}} \cdots\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}\right] .
$$

How does this relate to coordinate vectors?

§4.4 Change of coordinates

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates).

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V,

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$
[\mathbf{x}]_{\mathcal{C}}={ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$
[\mathbf{x}]_{\mathcal{C}}={ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

The matrix ${ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}$ is called the change of coordinates matrix from \mathcal{B} to \mathcal{C}.

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates). The key property of $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$ is that

$$
[T(\mathbf{x})]_{\mathcal{C}}={ }_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the same vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$
[\mathbf{x}]_{\mathcal{C}}={ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

The matrix ${ }_{\mathcal{C}}[\mathrm{id}]_{\mathcal{B}}$ is called the change of coordinates matrix from \mathcal{B} to \mathcal{C}. Let's see how this works in our classwork example (back page)!

§4.4 Example (derivative)

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.
Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}^{2}.

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.
Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}^{2}.
What is the matrix $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$?

§4.4 Example (derivative)

Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p})=\mathbf{p}^{\prime}$ (the first derivative).
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of \mathbb{P}^{3}.
Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}^{2}.
What is the matrix $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$? Well,

$$
\mathcal{C}^{[}[T]_{\mathcal{B}}=\left[[T(1)]_{\mathcal{C}}[T(t)]_{\mathcal{C}}\left[T\left(t^{2}\right)\right]_{\mathcal{C}}\left[T\left(t^{3}\right)\right]_{\mathcal{C}}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

§4.4 Example (derivative) continued

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively.

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

which is equal to

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{C}^{[}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

which is equal to

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
3 \\
8 \\
15
\end{array}\right]
$$

§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

$$
T\left(2+3 t+4 t^{2}+5 t^{3}\right)
$$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$
\left[T\left(2+3 t+4 t^{2}+5 t^{3}\right)\right]_{\mathcal{C}}=\mathcal{c}[T]_{\mathcal{B}}\left[2+3 t+4 t^{2}+5 t^{3}\right]_{\mathcal{B}}
$$

which is equal to

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
3 \\
8 \\
15
\end{array}\right]
$$

and $T\left(2+3 t+4 t^{2}+5 t^{3}\right)=3+8 t+15 t^{2}$.

