

Lecture 15

Math 22 Summer 2017 July 21, 2017

§4.4 Coordinates

- What are coordinates for an element of a vector space?
- How can coordinates be represented geometrically?
- Coordinate maps $V \to \mathbb{R}^n$ and isomorphism

§4.4 Theorem 7 (unique representation on a basis)

Let V be a vector space.

Let V be a vector space. Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for V.

Let V be a vector space. Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for V. For every $\mathbf{x} \in V$, there are unique scalars c_1, \dots, c_n such that

 $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n.$

Let V be a vector space. Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for V. For every $\mathbf{x} \in V$, there are unique scalars c_1, \dots, c_n such that

 $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n.$

Proof.

Let V be a vector space. Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for V. For every $\mathbf{x} \in V$, there are unique scalars c_1, \dots, c_n such that

 $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n.$

Proof.

Consider another representation and use independence.

§4.4 Definition of coordinates relative to a basis

Let \mathbf{x} live in a vector space V.

Let **x** live in a vector space V. Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for V.

Let **x** live in a vector space *V*. Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis for *V*. The **coordinates of x relative to the basis** \mathcal{B} are the unique scalars $c_1, ..., c_n$ obtained by writing **x** in terms of \mathcal{B} .

Let **x** live in a vector space *V*. Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis for *V*. The **coordinates of x relative to the basis** \mathcal{B} are the unique scalars $c_1, ..., c_n$ obtained by writing **x** in terms of \mathcal{B} .

The vector of scalars is denoted $[\mathbf{x}]_{\mathcal{B}}$.

Let **x** live in a vector space *V*. Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis for *V*. The **coordinates of x relative to the basis** \mathcal{B} are the unique scalars $c_1, ..., c_n$ obtained by writing **x** in terms of \mathcal{B} .

The vector of scalars is denoted $[x]_{\mathcal{B}}.$ We call $[x]_{\mathcal{B}}$ the coordinate vector of x.

Let **x** live in a vector space *V*. Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis for *V*. The **coordinates of x relative to the basis** \mathcal{B} are the unique scalars $c_1, ..., c_n$ obtained by writing **x** in terms of \mathcal{B} .

The vector of scalars is denoted $[x]_{\mathcal{B}}$. We call $[x]_{\mathcal{B}}$ the **coordinate vector of x**. Note that it depends on the basis!

Let **x** live in a vector space *V*. Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis for *V*. The **coordinates of x relative to the basis** \mathcal{B} are the unique scalars $c_1, ..., c_n$ obtained by writing **x** in terms of \mathcal{B} .

The vector of scalars is denoted $[x]_{\mathcal{B}}$. We call $[x]_{\mathcal{B}}$ the **coordinate vector of x**. Note that it depends on the basis!

The map $V \to \mathbb{R}^n$ defined by $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is called a **coordinate map**.

Let's see how this works in a concrete example:

https://math.dartmouth.edu/~m22x17/section2lectures/
classwork15.pdf

Front page only for now!

Theorem

Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis of a vector space V.

Theorem

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis of a vector space V. Then the map to coordinates $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is linear, one-to-one, and onto.

Theorem

Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis of a vector space V. Then the map to coordinates $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is linear, one-to-one, and onto. A map of this type is called an **isomorphism**.

Theorem

Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be a basis of a vector space V. Then the map to coordinates $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is linear, one-to-one, and onto. A map of this type is called an **isomorphism**.

What's the proof?

§4.4 Example

Consider \mathbb{P}_3 , the vector space of polynomials (in *t*) with degree at most 3.

Consider \mathbb{P}_3 , the vector space of polynomials (in *t*) with degree at most 3.

What is a basis for this space?

Consider \mathbb{P}_3 , the vector space of polynomials (in *t*) with degree at most 3.

What is a basis for this space?

How does the previous theorem apply to $\mathbb{P}_3?$

The matrix of a linear transformation revisited

We can encode the map T in a matrix just like we did for $T: \mathbb{R}^n \to \mathbb{R}^m$ with the standard matrix.

We can encode the map T in a matrix just like we did for $T: \mathbb{R}^n \to \mathbb{R}^m$ with the standard matrix.

Pick a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of VPick a basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ of W.

We can encode the map T in a matrix just like we did for $T: \mathbb{R}^n \to \mathbb{R}^m$ with the standard matrix.

Pick a basis
$$\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$$
 of V
Pick a basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ of W .

We define the matrix of ${\cal T}$ relative to the bases ${\cal B}$ and ${\cal C}$, denoted $_{\cal C}[{\cal T}]_{\cal B}$ by

$${}_{\mathcal{C}}[\mathcal{T}]_{\mathcal{B}} = \left[[\mathcal{T}(\mathbf{b}_1)]_{\mathcal{C}} [\mathcal{T}(\mathbf{b}_2)]_{\mathcal{C}} \cdots [\mathcal{T}(\mathbf{b}_n)]_{\mathcal{C}} \right]$$

We can encode the map T in a matrix just like we did for $T: \mathbb{R}^n \to \mathbb{R}^m$ with the standard matrix.

Pick a basis
$$\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$$
 of V
Pick a basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ of W .

We define the matrix of ${\cal T}$ relative to the bases ${\cal B}$ and ${\cal C}$, denoted $_{\cal C}[{\cal T}]_{\cal B}$ by

$$_{\mathcal{C}}[\mathcal{T}]_{\mathcal{B}} = \left[[\mathcal{T}(\mathbf{b}_1)]_{\mathcal{C}} [\mathcal{T}(\mathbf{b}_2)]_{\mathcal{C}} \cdots [\mathcal{T}(\mathbf{b}_n)]_{\mathcal{C}} \right]$$

How does this relate to coordinate vectors?

§4.4 Change of coordinates

We can use the matrix of a linear transformation to write coordinate vectors with respect to different bases (i.e. to change coordinates).

$$[T(\mathbf{x})]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

$$[\mathcal{T}(\mathbf{x})]_{\mathcal{C}} = {}_{\mathcal{C}}[\mathcal{T}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Thus, if $\mathcal B$ and $\mathcal C$ are bases of the same vector space V,

$$[\mathcal{T}(\mathbf{x})]_{\mathcal{C}} = {}_{\mathcal{C}}[\mathcal{T}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the *same* vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \rightarrow V$ in the following way.

$$[T(\mathbf{x})]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the *same* vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \to V$ in the following way.

$$[\mathbf{x}]_{\mathcal{C}} = {}_{\mathcal{C}}[\mathsf{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$
 .

$$[\mathcal{T}(\mathbf{x})]_{\mathcal{C}} = {}_{\mathcal{C}}[\mathcal{T}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the *same* vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \to V$ in the following way.

$$[\mathbf{x}]_{\mathcal{C}} = {}_{\mathcal{C}}[\mathsf{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}.$$

The matrix ${}_{\mathcal{C}}[id]_{\mathcal{B}}$ is called the change of coordinates matrix from \mathcal{B} to \mathcal{C} .

$$[T(\mathbf{x})]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Thus, if \mathcal{B} and \mathcal{C} are bases of the *same* vector space V, then we can relate the coordinate vectors of any element of \mathbf{x} using the identity linear transformation id : $V \to V$ in the following way.

$$[\mathbf{x}]_{\mathcal{C}} = {}_{\mathcal{C}}[\mathsf{id}]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}.$$

The matrix $_{\mathcal{C}}[id]_{\mathcal{B}}$ is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{C} . Let's see how this works in our classwork example (back page)!

§4.4 Example (derivative)

Let $T : \mathbb{P}_3 \to \mathbb{P}_2$ be defined by $T(\mathbf{p}) = \mathbf{p}'$ (the first derivative).

Let $T : \mathbb{P}_3 \to \mathbb{P}_2$ be defined by $T(\mathbf{p}) = \mathbf{p}'$ (the first derivative). Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of \mathbb{P}^3 .

Let $T : \mathbb{P}_3 \to \mathbb{P}_2$ be defined by $T(\mathbf{p}) = \mathbf{p}'$ (the first derivative). Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of \mathbb{P}^3 . Let $\mathcal{C} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}^2 .

Let $T : \mathbb{P}_3 \to \mathbb{P}_2$ be defined by $T(\mathbf{p}) = \mathbf{p}'$ (the first derivative). Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of \mathbb{P}^3 . Let $\mathcal{C} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}^2 . What is the matrix $_{\mathcal{C}}[T]_{\mathcal{B}}$?

Let $T : \mathbb{P}_3 \to \mathbb{P}_2$ be defined by $T(\mathbf{p}) = \mathbf{p}'$ (the first derivative). Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of \mathbb{P}^3 . Let $\mathcal{C} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}^2 . What is the matrix $_{\mathcal{C}}[T]_{\mathcal{B}}$? Well,

$${}_{\mathcal{C}}[\mathcal{T}]_{\mathcal{B}} = \left[[\mathcal{T}(1)]_{\mathcal{C}} [\mathcal{T}(t)]_{\mathcal{C}} [\mathcal{T}(t^2)]_{\mathcal{C}} [\mathcal{T}(t^3)]_{\mathcal{C}} \right] = \begin{bmatrix} 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 0 \\ 0 \ 0 \ 3 \end{bmatrix}.$$

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

 $T(2+3t+4t^2+5t^3).$

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

 $T(2+3t+4t^2+5t^3).$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively.

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

 $T(2+3t+4t^2+5t^3).$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$\left[T(2+3t+4t^2+5t^3)\right]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[2+3t+4t^2+5t^3]_{\mathcal{B}}$$

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

 $T(2+3t+4t^2+5t^3).$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$\left[T(2+3t+4t^2+5t^3)\right]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[2+3t+4t^2+5t^3]_{\mathcal{B}}$$

which is equal to

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

 $T(2+3t+4t^2+5t^3).$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$\left[T(2+3t+4t^2+5t^3)\right]_{\mathcal{C}} = c[T]_{\mathcal{B}}[2+3t+4t^2+5t^3]_{\mathcal{B}}$$

which is equal to

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \\ 15 \end{bmatrix}$$

Let's use the matrix of the derivative (computed on the previous slide) to verify something we already know namely

 $T(2+3t+4t^2+5t^3).$

Take \mathcal{B}, \mathcal{C} the standard bases in the domain and codomain respectively. Then

$$\left[T(2+3t+4t^2+5t^3)\right]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[2+3t+4t^2+5t^3]_{\mathcal{B}}$$

which is equal to

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \\ 15 \end{bmatrix}$$

and $T(2+3t+4t^2+5t^3) = 3+8t+15t^2$.

