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Just for today

§4.4 Coordinates

I What are coordinates for an element of a vector space?
I How can coordinates be represented geometrically?
I Coordinate maps V → Rn and isomorphism



§4.4 Theorem 7 (unique representation on a basis)

Theorem
Let V be a vector space. Let B = {b1, . . . , bn} be a basis for V .
For every x ∈ V , there are unique scalars c1, . . . , cn such that

x = c1b1 + · · ·+ cnbn.

Proof.
Consider another representation and use independence.
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§4.4 Definition of coordinates relative to a basis

Definition
Let x live in a vector space V . Let B = {b1, . . . , bn} be a basis for
V . The coordinates of x relative to the basis B are the unique
scalars c1, . . . , cn obtained by writing x in terms of B.

The vector of scalars is denoted [x]B. We call [x]B the coordinate
vector of x. Note that it depends on the basis!

The map V → Rn defined by x 7→ [x]B is called a coordinate
map.
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§4.4 Classwork

Let’s see how this works in a concrete example:

https://math.dartmouth.edu/˜m22x17/section2lectures/
classwork15.pdf

Front page only for now!

https://math.dartmouth.edu/~m22x17/section2lectures/classwork15.pdf
https://math.dartmouth.edu/~m22x17/section2lectures/classwork15.pdf


§4.4 Theorem 8

Using coordinates we can now see that all (finite dimensional)
vector spaces “look like Rn” in the following sense.

Theorem
Let B = {b1, . . . , bn} be a basis of a vector space V . Then the
map to coordinates x 7→ [x]B is linear, one-to-one, and onto. A
map of this type is called an isomorphism.

What’s the proof?
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§4.4 Example

Consider P3, the vector space of polynomials (in t) with degree at
most 3.

What is a basis for this space?

How does the previous theorem apply to P3?
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The matrix of a linear transformation revisited

Consider a linear transformation T : V →W .

We can encode the map T in a matrix just like we did for
T : Rn → Rm with the standard matrix.

Pick a basis B = {b1, . . . , bn} of V
Pick a basis C = {c1, . . . , cm} of W .

We define the matrix of T relative to the bases B and C,
denoted C[T ]B by

C[T ]B =
[

[T (b1)]C [T (b2)]C · · · [T (bn)]C
]

.

How does this relate to coordinate vectors?
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§4.4 Change of coordinates

We can use the matrix of a linear transformation to write
coordinate vectors with respect to different bases (i.e. to change
coordinates). The key property of C[T ]B is that

[T (x)]C = C[T ]B[x]B

Thus, if B and C are bases of the same vector space V , then we
can relate the coordinate vectors of any element of x using the
identity linear transformation id : V → V in the following way.

[x]C = C[id]B[x]B .

The matrix C[id]B is called the change of coordinates matrix
from B to C. Let’s see how this works in our classwork example
(back page)!
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§4.4 Example (derivative)

Let T : P3 → P2 be defined by T (p) = p′ (the first derivative).
Let B = {1, t, t2, t3} be the standard basis of P3.
Let C = {1, t, t2} be the standard basis of P2.
What is the matrix C[T ]B? Well,

C[T ]B =
[

[T (1)]C [T (t)]C [T (t2)]C [T (t3)]C
]

=

 0 1 0 0
0 0 2 0
0 0 0 3

 .
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§4.4 Example (derivative) continued

Let’s use the matrix of the derivative (computed on the
previous slide) to verify something we already know namely

T (2 + 3t + 4t2 + 5t3).

Take B, C the standard bases in the domain and codomain
respectively. Then[

T (2 + 3t + 4t2 + 5t3)
]

C
= C[T ]B[2 + 3t + 4t2 + 5t3]B

which is equal to

 0 1 0 0
0 0 2 0
0 0 0 3




2
3
4
5

 =

 3
8

15


and T (2 + 3t + 4t2 + 5t3) = 3 + 8t + 15t2.
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