Lecture 14

Math 22 Summer 2017
July 19, 2017

Just for today

- §4.3 Bases of a vector space
- Midterm1 tonight 6pm - 8pm in Kemeny 008

§4.3 Definition of basis

§4.3 Definition of basis

Definition

§4.3 Definition of basis

Definition

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V.

$\S 4.3$ Definition of basis

Definition

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. \mathcal{B} is a basis of V if:

§4.3 Definition of basis

Definition

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. \mathcal{B} is a basis of V if:
$-\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=V$

§4.3 Definition of basis

Definition

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. \mathcal{B} is a basis of V if:

- $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=V$
- \mathcal{B} is a linearly independent set

§4.3 Definition of basis

Definition

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. \mathcal{B} is a basis of V if:
$-\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=V$

- \mathcal{B} is a linearly independent set

A concise way to think about a basis is as a minimal spanning set.

§4.3 Examples of bases

§4.3 Examples of bases

- $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of \mathbb{R}^{n}.

§4.3 Examples of bases

- $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of \mathbb{R}^{n}.
- $\mathcal{B}=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a basis of \mathbb{P}_{n}.

§4.3 Examples of bases

- $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of \mathbb{R}^{n}.
- $\mathcal{B}=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a basis of \mathbb{P}_{n}.
- Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a set of 3 vectors in \mathbb{R}^{3}.

§4.3 Examples of bases

- $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a basis of \mathbb{R}^{n}.
- $\mathcal{B}=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a basis of \mathbb{P}_{n}.
- Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a set of 3 vectors in \mathbb{R}^{3}. How can we check if \mathcal{B} is a basis?

§4.3 Theorem 5

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis.

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V.

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Then:

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Then:

1. If one of the vectors (call it \mathbf{v}_{k}) of S is a linear combination of the rest, then the span of the vectors in S without including \mathbf{v}_{k} still spans H.

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Then:

1. If one of the vectors (call it \mathbf{v}_{k}) of S is a linear combination of the rest, then the span of the vectors in S without including \mathbf{v}_{k} still spans H. (i.e. we can throw out \mathbf{v}_{k} and it doesn't change the span).

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Then:

1. If one of the vectors (call it \mathbf{v}_{k}) of S is a linear combination of the rest, then the span of the vectors in S without including \mathbf{v}_{k} still spans H. (i.e. we can throw out \mathbf{v}_{k} and it doesn't change the span).
2. If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis. We can obtain a basis by eliminating redundant vectors...

Theorem

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V.
Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Then:

1. If one of the vectors (call it \mathbf{v}_{k}) of S is a linear combination of the rest, then the span of the vectors in S without including \mathbf{v}_{k} still spans H. (i.e. we can throw out \mathbf{v}_{k} and it doesn't change the span).
2. If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

What's the proof?

§4.3 Example

§4.3 Example

Consider the matrix

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

§4.3 Example

Consider the matrix

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul A ?

§4.3 Example

Consider the matrix

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul A ? The parametric vector form describing $\mathrm{Nul} A$ always produces a basis.

§4.3 Example

Consider the matrix

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul A ? The parametric vector form describing $\mathrm{Nu} A$ always produces a basis.

What is a basis for $\operatorname{Col} A$?

§4.3 Example

Consider the matrix

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

What is a basis for Nul A ? The parametric vector form describing $\mathrm{Nu} A$ always produces a basis.

What is a basis for $\operatorname{Col} A$? Eliminate columns that are linear combinations of the others.

§4.3 Example

Consider the matrix

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul A ? The parametric vector form describing $\mathrm{Nu} A$ always produces a basis.

What is a basis for $\operatorname{Col} A$? Eliminate columns that are linear combinations of the others.

What changes if A is not in RREF?

§4.3 Example continued

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B ?

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B ? Row operations don't affect $\operatorname{Nul} A$.

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for $\operatorname{Col} B$?

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for $\operatorname{Nul} B$? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB ? Row operations do affect the column space.

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for $\operatorname{Nul} B$? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB? Row operations do affect the column space. But all is not lost.

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB ? Row operations do affect the column space. But all is not lost. The same dependence relations on the columns of A (where they are obvious) hold for the columns of B.

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB ? Row operations do affect the column space. But all is not lost. The same dependence relations on the columns of A (where they are obvious) hold for the columns of B. Check some!

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB ? Row operations do affect the column space. But all is not lost. The same dependence relations on the columns of A (where they are obvious) hold for the columns of B.
Check some! Why is this?

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB? Row operations do affect the column space. But all is not lost. The same dependence relations on the columns of A (where they are obvious) hold for the columns of B. Check some! Why is this? Well, $A \mathbf{x}=\mathbf{0}$ and $B \mathbf{x}=\mathbf{0}$ have the same solution sets.

§4.3 Example continued

Now consider the matrix B whose RREF is A.

$$
B=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & -3 & -39 \\
-1 & 0 & -3 & 0 & -11 & 1 & 13 \\
0 & -2 & -4 & 0 & -14 & 6 & 78 \\
0 & 0 & 0 & 1 & 5 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrrrrrr}
1 & 0 & 3 & 0 & 11 & 0 & 0 \\
0 & 1 & 2 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

What is a basis for Nul B? Row operations don't affect $\operatorname{Nul} A$.
What is a basis for ColB? Row operations do affect the column space. But all is not lost. The same dependence relations on the columns of A (where they are obvious) hold for the columns of B.
Check some! Why is this? Well, $A \mathbf{x}=\mathbf{0}$ and $B \mathbf{x}=\mathbf{0}$ have the same solution sets.

Let's organize these observations in a theorem...

§4.3 Theorem 6

§4.3 Theorem 6

Theorem

The pivot columns of a matrix form a basis for the column space.

§4.3 Theorem 6

Theorem

The pivot columns of a matrix form a basis for the column space.
Note that we need to take the pivot columns of the original matrix!

§4.3 Theorem 6

Theorem

The pivot columns of a matrix form a basis for the column space.
Note that we need to take the pivot columns of the original matrix!

§4.3 Classwork

How about some T / F review for the midterm?

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
$\checkmark A, B$ invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False

§4.3 Classwork

How about some T/F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ onto implies T one-to-one.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ onto implies T one-to-one. True

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ onto implies T one-to-one. True
- A invertible implies $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ onto implies T one-to-one. True
- A invertible implies $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. False

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ onto implies T one-to-one. True
- A invertible implies $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. False
- $T(\mathbf{0}) \neq \mathbf{0}$ implies T is not linear.

§4.3 Classwork

How about some T / F review for the midterm?

- A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for each $\mathbf{x} \in \mathbb{R}^{n}$, there is a $\mathbf{b} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{b}$. False
- A, B invertible $\Longrightarrow\left((A B)^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}$. True
- The solutions of a linear system are changed by row operations. False
- T is onto if every column of [T] has a pivot. False
- Any set containing the zero vector is linearly dependent. True
- For $A \mathbf{x}=\mathbf{0}$ to have a solution, A must have a pivot in every row. False
- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly dependent set, then $\mathbf{v}_{4} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. False
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ onto implies T one-to-one. True
- A invertible implies $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. False
- $T(\mathbf{0}) \neq \mathbf{0}$ implies T is not linear. True

