Lecture 13

Math 22 Summer 2017
July 17, 2017

Reminders/Announcements

- Midterm 1 Wednesday, July 19, Kemeny 008, 6pm-8pm
- Please respond to email if you have a conflict with this time!
- Kate is moving her study group to Wednesday 3pm - 4:30pm in the usual place (Berry 370). She is not having study group this Sunday.
- Last scheduled x-hour meets tomorrow.
- Thursday office hours are on Tuesday this week due to: https://wiki.sagemath.org/days87
- HW4 will be posted later today and due Friday as usual.
- Any other questions (content or otherwise) please feel free to email me.

Just for today

- §4.1 Two examples we didn't get to last time
- §4.2 Null and column spaces corresponding to linear maps

§4.1 Proving a set is a subspace

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition.

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

Let

$$
H=\left\{\left[\begin{array}{c}
s+2 t \\
-t \\
3 s-7 t
\end{array}\right]: s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

Let

$$
H=\left\{\left[\begin{array}{c}
s+2 t \\
-t \\
3 s-7 t
\end{array}\right]: s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

How can we use the previous theorem to show H is a subspace?

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

Let

$$
H=\left\{\left[\begin{array}{c}
s+2 t \\
-t \\
3 s-7 t
\end{array}\right]: s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

How can we use the previous theorem to show H is a subspace? Well,

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
-7
\end{array}\right]\right\} .
$$

§4.1 Proving a set is not a subspace

§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that at least one of the axioms fails to be satisfied.

§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$
H=\left\{\left[\begin{array}{c}
3 s \\
2+5 s
\end{array}\right]: s \in \mathbb{R}\right\}
$$

§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$
H=\left\{\left[\begin{array}{c}
3 s \\
2+5 s
\end{array}\right]: s \in \mathbb{R}\right\}
$$

How do we show H is not a subspace?
§4.2 Definition of null space

§4.2 Definition of null space

Definition

§4.2 Definition of null space

Definition

Let A be an $m \times n$ matrix.

§4.2 Definition of null space

Definition

Let A be an $m \times n$ matrix. The null space of A is the set of solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$.

§4.2 Definition of null space

Definition

Let A be an $m \times n$ matrix. The null space of A is the set of solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$. We denote the null space of a matrix A by $\operatorname{Nul} A$.

§4.2 Theorem 2

§4.2 Theorem 2

Theorem

§4.2 Theorem 2

Theorem
Let A be an $m \times n$ matrix.

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace.

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space?

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^{n}.

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^{n}.

Proof.

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^{n}.

Proof.
Show $\mathbf{0} \in \operatorname{Nul} A$.

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^{n}.

Proof.
Show $\mathbf{0} \in \operatorname{Nul} A$. Show Nul A closed under addition.

§4.2 Theorem 2

Theorem

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^{n}.

Proof.

Show $\mathbf{0} \in \operatorname{Nul} A$. Show Nul A closed under addition. Show $\operatorname{Nul} A$ closed under scalar multiplication.

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
Solution:

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
Solution: First note that the RREF of A is

$$
\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
Solution: First note that the RREF of A is

$$
\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Now write out the parametric vector form of the solutions to $A \mathbf{x}=\mathbf{0}$.

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
Solution: First note that the RREF of A is

$$
\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Now write out the parametric vector form of the solutions to $A \mathbf{x}=\mathbf{0}$. Can you see how this yields a spanning set?

§4.2 An explicit description for Nul A

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
Solution: First note that the RREF of A is

$$
\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Now write out the parametric vector form of the solutions to $A \mathbf{x}=\mathbf{0}$. Can you see how this yields a spanning set? Is this set linearly independent?

§4.2 Null spaces as kernels of linear maps

§4.2 Null spaces as kernels of linear maps

As you might expect, Nul A can also be phrased in the language of linear maps.

§4.2 Null spaces as kernels of linear maps

As you might expect, Nul A can also be phrased in the language of linear maps.

Definition

§4.2 Null spaces as kernels of linear maps

As you might expect, Nul A can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces.

§4.2 Null spaces as kernels of linear maps

As you might expect, $\mathrm{Nul} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. (What is this?)

§4.2 Null spaces as kernels of linear maps

As you might expect, $\mathrm{Nul} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. (What is this?) The kernel of T is the set of all vectors $\mathbf{x} \in V$ such that $T(\mathbf{x})=\mathbf{0}$.

§4.2 Null spaces as kernels of linear maps

As you might expect, $\mathrm{Nul} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. (What is this?) The kernel of T is the set of all vectors $\mathbf{x} \in V$ such that $T(\mathbf{x})=\mathbf{0}$. We denote this set by $\operatorname{ker} T$.

§4.2 Null spaces as kernels of linear maps

As you might expect, Nul A can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. (What is this?)
The kernel of T is the set of all vectors $\mathbf{x} \in V$ such that $T(\mathbf{x})=\mathbf{0}$. We denote this set by $\operatorname{ker} T$.

How does ker T relate to $\operatorname{Nul} A$?

§4.2 Definition of column space

§4.2 Definition of column space

Definition

§4.2 Definition of column space

Definition

Let A be an $m \times n$ matrix.

§4.2 Definition of column space

Definition

Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A.

§4.2 Definition of column space

Definition

Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A. We denote this space as $\operatorname{Col} A$.

§4.2 Definition of column space

Definition

Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A. We denote this space as $\operatorname{Col} A$.

Why is $\operatorname{Col} A$ a subspace?

§4.2 Definition of column space

Definition

Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A. We denote this space as $\operatorname{Col} A$.

Why is $\operatorname{Col} A$ a subspace?
What vector space is $\operatorname{Col} A$ a subspace of?

§4.2 Definition of column space

Definition

Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A. We denote this space as $\operatorname{Col} A$.

Why is $\operatorname{Col} A$ a subspace?
What vector space is $\operatorname{Col} A$ a subspace of?
When is $\operatorname{Col} A=\mathbb{R}^{m}$?

§4.2 Column spaces as images of linear maps

§4.2 Column spaces as images of linear maps

As you might expect, $\operatorname{Col} A$ can also be phrased in the language of linear maps.

§4.2 Column spaces as images of linear maps

As you might expect, $\mathrm{Col} A$ can also be phrased in the language of linear maps.

Definition

§4.2 Column spaces as images of linear maps

As you might expect, $\mathrm{Col} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces.

§4.2 Column spaces as images of linear maps

As you might expect, $\operatorname{Col} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. The image or range of T is the set of all vectors $\mathbf{b} \in W$ such that there exists $\mathbf{x} \in V$ and $T(\mathbf{x})=\mathbf{b}$.

§4.2 Column spaces as images of linear maps

As you might expect, $\operatorname{Col} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. The image or range of T is the set of all vectors $\mathbf{b} \in W$ such that there exists $\mathbf{x} \in V$ and $T(\mathbf{x})=\mathbf{b}$. We denote this set by $\operatorname{img} T$.

§4.2 Column spaces as images of linear maps

As you might expect, $\operatorname{Col} A$ can also be phrased in the language of linear maps.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. The image or range of T is the set of all vectors $\mathbf{b} \in W$ such that there exists $\mathbf{x} \in V$ and $T(\mathbf{x})=\mathbf{b}$. We denote this set by $\operatorname{img} T$.

How does $\operatorname{img} T$ relate to $\operatorname{Col} A$?

§4.2 Classwork

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

§4.2 Classwork

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

1. Nul $A \subseteq \mathbb{R}^{k}$ for what k ? $\operatorname{Col} A \subseteq \mathbb{R}^{k}$ for what k ?

§4.2 Classwork

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1. Nul $A \subseteq \mathbb{R}^{k}$ for what k ? $\operatorname{Col} A \subseteq \mathbb{R}^{k}$ for what k ?
2. Find a nonzero vector in $\operatorname{Nul} A$. Find a nonzero vector in $\operatorname{Col} A$.

§4.2 Classwork

Let

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1. Nul $A \subseteq \mathbb{R}^{k}$ for what k ? $\operatorname{Col} A \subseteq \mathbb{R}^{k}$ for what k ?
2. Find a nonzero vector in $\operatorname{Nul} A$. Find a nonzero vector in $\operatorname{Col} A$.
3. Let

$$
\mathbf{u}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Is $\mathbf{u} \in \operatorname{Nul} A$? Is $\mathbf{u} \in \operatorname{Col} A$? Is $\mathbf{v} \in \operatorname{Nul} A$? Is $\mathbf{v} \in \operatorname{Col} A$?

