

Lecture 13

Math 22 Summer 2017 July 17, 2017

- Midterm 1 Wednesday, July 19, Kemeny 008, 6pm-8pm
 - Please respond to email if you have a conflict with this time!
 - Kate is moving her study group to Wednesday 3pm 4:30pm in the usual place (Berry 370). She is not having study group this Sunday.
- Last scheduled x-hour meets tomorrow.
- Thursday office hours are on Tuesday this week due to: https://wiki.sagemath.org/days87
- ► HW4 will be posted later today and due Friday as usual.
- Any other questions (content or otherwise) please feel free to email me.

- ▶ §4.1 Two examples we didn't get to last time
- ▶ §4.2 Null and column spaces corresponding to linear maps

To show a subset of a vector space is a subspace we can always use the definition.

Let

$$H = \left\{ \begin{bmatrix} s+2t\\-t\\3s-7t \end{bmatrix} : s,t \in \mathbb{R} \right\} \subseteq \mathbb{R}^3.$$

Let

$$H = \left\{ egin{bmatrix} s+2t \ -t \ 3s-7t \end{bmatrix} : s,t \in \mathbb{R}
ight\} \subseteq \mathbb{R}^3.$$

How can we use the previous theorem to show H is a subspace?

Let

$$H = \left\{ \left[egin{array}{c} s+2t \ -t \ 3s-7t \end{array}
ight] : s,t\in \mathbb{R}
ight\} \subseteq \mathbb{R}^3.$$

How can we use the previous theorem to show H is a subspace? Well,

$$H = \operatorname{Span} \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-7 \end{bmatrix} \right\}.$$

To show that a subset is *not* a subspace, we just need to show that at least one of the axioms fails to be satisfied.

To show that a subset is *not* a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$H = \left\{ \begin{bmatrix} 3s \\ 2+5s \end{bmatrix} : s \in \mathbb{R} \right\}.$$

To show that a subset is *not* a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$\mathcal{H} = \left\{ \begin{bmatrix} 3s \\ 2+5s \end{bmatrix} : s \in \mathbb{R} \right\}.$$

How do we show H is not a subspace?

Let A be an $m \times n$ matrix.

Let A be an $m \times n$ matrix. The **null space** of A is the set of solutions to the matrix equation $A\mathbf{x} = \mathbf{0}$.

Let *A* be an $m \times n$ matrix. The **null space** of *A* is the set of solutions to the matrix equation $A\mathbf{x} = \mathbf{0}$. We denote the null space of a matrix *A* by Nul *A*.

Let A be an $m \times n$ matrix.

Let A be an $m \times n$ matrix. Then the null space of A is a subspace.

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space?

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^n .

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^n .

Proof.

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^n .

Proof.

Show $\mathbf{0} \in \mathsf{Nul} A$.

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^n .

Proof.

Show $\mathbf{0} \in \mathsf{Nul} A$. Show $\mathsf{Nul} A$ closed under addition.

Let A be an $m \times n$ matrix. Then the null space of A is a subspace. Of what vector space? \mathbb{R}^n .

Proof.

Show $\mathbf{0} \in \text{Nul } A$. Show Nul A closed under addition. Show Nul A closed under scalar multiplication.

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that Nul $A = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\operatorname{Nul} A = \operatorname{Span}{\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}}$.

Solution:

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that Nul $A = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Solution: First note that the RREF of A is

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that Nul $A = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Solution: First note that the RREF of A is

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Now write out the parametric vector form of the solutions to $A\mathbf{x} = \mathbf{0}$.

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that Nul $A = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Solution: First note that the RREF of A is

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Now write out the parametric vector form of the solutions to $A\mathbf{x} = \mathbf{0}$. Can you see how this yields a spanning set?

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that Nul $A = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Solution: First note that the RREF of A is

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Now write out the parametric vector form of the solutions to $A\mathbf{x} = \mathbf{0}$. Can you see how this yields a spanning set? Is this set linearly independent?

§4.2 Null spaces as kernels of linear maps

Definition

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces.

Definition

Let $T: V \rightarrow W$ be a linear map of vector spaces. (What is this?)

Definition

Let $T: V \to W$ be a linear map of vector spaces. (What is this?) The **kernel** of T is the set of all vectors $\mathbf{x} \in V$ such that $T(\mathbf{x}) = \mathbf{0}$.

Definition

Let $T: V \to W$ be a linear map of vector spaces. (What is this?) The **kernel** of T is the set of all vectors $\mathbf{x} \in V$ such that $T(\mathbf{x}) = \mathbf{0}$. We denote this set by ker T.

Definition

Let $T: V \to W$ be a linear map of vector spaces. (What is this?) The **kernel** of T is the set of all vectors $\mathbf{x} \in V$ such that $T(\mathbf{x}) = \mathbf{0}$. We denote this set by ker T.

How does ker T relate to Nul A?

§4.2 Definition of column space

Let A be an $m \times n$ matrix.

Let A be an $m \times n$ matrix. The **column space** of A is the span of the columns of A.

Let A be an $m \times n$ matrix. The **column space** of A is the span of the columns of A. We denote this space as Col A.

Let A be an $m \times n$ matrix. The **column space** of A is the span of the columns of A. We denote this space as Col A.

Why is $\operatorname{Col} A$ a subspace?

Let A be an $m \times n$ matrix. The **column space** of A is the span of the columns of A. We denote this space as Col A.

Why is $\operatorname{Col} A$ a subspace? What vector space is $\operatorname{Col} A$ a subspace of?

Let A be an $m \times n$ matrix. The **column space** of A is the span of the columns of A. We denote this space as Col A.

Why is $\operatorname{Col} A$ a subspace? What vector space is $\operatorname{Col} A$ a subspace of? When is $\operatorname{Col} A = \mathbb{R}^m$?

§4.2 Column spaces as images of linear maps

Definition

Definition

Let $T: V \to W$ be a linear map of vector spaces.

Definition

Let $T: V \to W$ be a linear map of vector spaces. The **image** or **range** of T is the set of all vectors $\mathbf{b} \in W$ such that there exists $\mathbf{x} \in V$ and $T(\mathbf{x}) = \mathbf{b}$.

Definition

Let $T: V \to W$ be a linear map of vector spaces. The **image** or **range** of T is the set of all vectors $\mathbf{b} \in W$ such that there exists $\mathbf{x} \in V$ and $T(\mathbf{x}) = \mathbf{b}$. We denote this set by $\operatorname{img} T$.

Definition

Let $T: V \to W$ be a linear map of vector spaces. The **image** or **range** of T is the set of all vectors $\mathbf{b} \in W$ such that there exists $\mathbf{x} \in V$ and $T(\mathbf{x}) = \mathbf{b}$. We denote this set by $\operatorname{img} T$.

How does $\operatorname{img} T$ relate to $\operatorname{Col} A$?

.

Let

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

1. Nul $A \subseteq \mathbb{R}^k$ for what k? Col $A \subseteq \mathbb{R}^k$ for what k?

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. Nul $A \subseteq \mathbb{R}^k$ for what k? Col $A \subseteq \mathbb{R}^k$ for what k?
- 2. Find a nonzero vector in Nul A. Find a nonzero vector in Col A.

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. Nul $A \subseteq \mathbb{R}^k$ for what k? Col $A \subseteq \mathbb{R}^k$ for what k?
- 2. Find a nonzero vector in Nul A. Find a nonzero vector in Col A.

3. Let

$$\mathbf{u} = \begin{bmatrix} 0\\1\\0\\1\\1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$

Is $\mathbf{u} \in \operatorname{Nul} A$? Is $\mathbf{u} \in \operatorname{Col} A$? Is $\mathbf{v} \in \operatorname{Nul} A$? Is $\mathbf{v} \in \operatorname{Col} A$?