
Lecture 13
Math 22 Summer 2017

July 17, 2017



Reminders/Announcements

I Midterm 1 Wednesday, July 19, Kemeny 008, 6pm-8pm
I Please respond to email if you have a conflict with this time!
I Kate is moving her study group to Wednesday 3pm - 4:30pm

in the usual place (Berry 370). She is not having study group
this Sunday.

I Last scheduled x-hour meets tomorrow.
I Thursday office hours are on Tuesday this week due to:

https://wiki.sagemath.org/days87
I HW4 will be posted later today and due Friday as usual.
I Any other questions (content or otherwise) please feel free to

email me.

https://wiki.sagemath.org/days87


Just for today

I §4.1 Two examples we didn’t get to last time
I §4.2 Null and column spaces corresponding to linear maps



§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always
use the definition. However, the previous theorem gives us another
way...

Let

H =


 s + 2t
−t

3s − 7t

 : s, t ∈ R

 ⊆ R3.

How can we use the previous theorem to show H is a subspace?
Well,

H = Span


 1

0
3
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 2
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 .
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§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that
at least one of the axioms fails to be satisfied.
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]
: s ∈ R

}
.
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Definition
Let A be an m × n matrix. The null space of A is the set of
solutions to the matrix equation Ax = 0. We denote the null space
of a matrix A by Nul A.
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Of what vector space? Rn.
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Show 0 ∈ Nul A. Show Nul A closed under addition. Show Nul A
closed under scalar multiplication.
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§4.2 An explicit description for Nul A
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Find vectors u, v, w such that Nul A = Span{u, v, w}.

Solution: First note that the RREF of A is 1 −2 0 −1 3
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0 0 0 0 0
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Now write out the parametric vector form of the solutions to
Ax = 0. Can you see how this yields a spanning set? Is this set
linearly independent?
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Let

A =
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