

Lecture 12

Math 22 Summer 2017 July 14, 2017

- Answers to mini-quiz
- Finish §3.2 properties of determinants
- §4.1 abstract vector spaces

§3.2 Examples

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
.

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
. We saw previously that det $A = 4$.

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
. We saw previously that det $A = 4$. Now
compute the determinants of $B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2 \end{bmatrix}$,
 $C = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1 \end{bmatrix}$.

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
. We saw previously that det $A = 4$. Now
compute the determinants of $B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2 \end{bmatrix}$,
 $C = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1 \end{bmatrix}$.

We find that det $B = \det C = \det A$,

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
. We saw previously that det $A = 4$. Now
compute the determinants of $B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2 \end{bmatrix}$,
 $C = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1 \end{bmatrix}$.

We find that det $B = \det C = \det A$, det $D = 2 \det A$,

Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
. We saw previously that det $A = 4$. Now
compute the determinants of $B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2 \end{bmatrix}$,
 $C = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1 \end{bmatrix}$.

We find that det $B = \det C = \det A$, det $D = 2 \det A$, and det $E = -\det D = -2 \det A$.

§3.2 Theorem 4

Consider a square matrix A.

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges?

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes!

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants?

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U.

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U. Then

 $\det A = \begin{cases} (-1)^r (\text{product of pivots of } U) & \text{if } A \text{ is invertible} \\ 0 & \text{if } A \text{ is not invertible} \end{cases}$

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U. Then

$$\det A = \begin{cases} (-1)^r (\text{product of pivots of } U) & \text{if } A \text{ is invertible} \\ 0 & \text{if } A \text{ is not invertible} \end{cases}$$

Theorem

A square matrix A is invertible if and only if det $A \neq 0$.

§3.2 Theorem 5

Theorem

If A is an $n \times n$ matrix, the det $A^T = \det A$.

§3.2 Theorem 6

Theorem

If A and B are $n \times n$ matrices, then det $AB = (\det A)(\det B)$.

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers.

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors.

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms.

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u} + \mathbf{v} \in V$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u} + \mathbf{v} \in V$ 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

- 4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$
- 5. There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

2. u + v = v + u

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

- 4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$
- 5. There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

6. $c\mathbf{u} \in V$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$

- 5. There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- **6**. *c***u** ∈ *V*

$$7. \ c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$

- 5. There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- **6**. *c***u** ∈ *V*

$$7. \ c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$

- 5. There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- **6**. *c***u** ∈ *V*

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$

Let $F = \mathbb{R}$ or \mathbb{C} be the real or complex numbers. We call F the *field of scalars*. A **vector space over** F is a nonempty set V of vectors. V comes equipped with *addition* and *scalar multiplication* which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1.
$$\mathbf{u} + \mathbf{v} \in V$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. There is a vector ${\bf 0}$ such that ${\bf u}+{\bf 0}={\bf u}$

- 5. There is a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- **6**. *c***u** ∈ *V*

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$

10. 1u = u

§4.1 Basic properties

Try to prove the following properties using only the axioms...

Try to prove the following properties using only the axioms...

- (a) **0** is unique
- (b) $-\mathbf{u}$ is unique
- (c) 0u = 0
- (d) c0 = 0
- (e) $-\mathbf{u} = (-1)\mathbf{u}$

- $V = \mathbb{R}^n$
- Let $V = \mathbb{P}_n$ denote the set of polynomials of degree at most n.

• $V = \mathbb{R}^n$

Let V = P_n denote the set of polynomials of degree at most n. More precisely, (writing polynomials in the variable t)

$$\mathbb{P}_n = \left\{ \underbrace{a_0 + a_1 t^1 + a_2 t^2 + \dots + a_n t^n}_{\mathbf{p}(t)} : a_i \in F \right\}.$$

• $V = \mathbb{R}^n$

Let V = P_n denote the set of polynomials of degree at most n. More precisely, (writing polynomials in the variable t)

$$\mathbb{P}_n = \left\{ \underbrace{a_0 + a_1 t^1 + a_2 t^2 + \dots + a_n t^n}_{\mathbf{p}(t)} : a_i \in F \right\}.$$

 $\blacktriangleright V = \{f : \mathbb{R} \to \mathbb{R}\}$

A subspace of a vector space V is a subset H of V such that:

A subspace of a vector space V is a subset H of V such that:

(a) $0 \in H$.

A **subspace** of a vector space V is a *subset* H of V such that:

(a) 0 ∈ H.
(b) H is closed under vector addition:

- A **subspace** of a vector space V is a *subset* H of V such that:
- (a) $0 \in H$.
- (b) *H* is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u} + \mathbf{v} \in H$.

- A **subspace** of a vector space V is a *subset* H of V such that:
- (a) $0 \in H$.
- (b) *H* is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u} + \mathbf{v} \in H$.
- (c) *H* is closed under scalar multiplication:

- A **subspace** of a vector space V is a *subset* H of V such that:
- (a) $0 \in H$.
- (b) *H* is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u} + \mathbf{v} \in H$.
- (c) *H* is closed under scalar multiplication: If $\mathbf{u} \in H$ and $\lambda \in F$, then $\lambda \mathbf{u} \in H$.

- A **subspace** of a vector space V is a *subset* H of V such that:
- (a) $\mathbf{0} \in H$.
- (b) *H* is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u} + \mathbf{v} \in H$.
- (c) *H* is closed under scalar multiplication: If $\mathbf{u} \in H$ and $\lambda \in F$, then $\lambda \mathbf{u} \in H$.
- Is a subspace of a vector space a vector space?

A **subspace** of a vector space V is a *subset* H of V such that:

- (a) $\mathbf{0} \in H$.
- (b) *H* is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u} + \mathbf{v} \in H$.
- (c) *H* is closed under scalar multiplication: If $\mathbf{u} \in H$ and $\lambda \in F$, then $\lambda \mathbf{u} \in H$.

Is a subspace of a vector space a vector space? Is a vector space a subspace?

• $H = \{\mathbf{0}\}$ is always a subspace.

- $H = \{\mathbf{0}\}$ is always a subspace.
- $H = \mathbb{P}_n$ is subspace of $V = \{f : \mathbb{R} \to \mathbb{R}\}.$

- $H = \{\mathbf{0}\}$ is always a subspace.
- $H = \mathbb{P}_n$ is subspace of $V = \{f : \mathbb{R} \to \mathbb{R}\}.$
- \mathbb{R}^2 is not a subspace of \mathbb{R}^3 .

- $H = \{\mathbf{0}\}$ is always a subspace.
- $H = \mathbb{P}_n$ is subspace of $V = \{f : \mathbb{R} \to \mathbb{R}\}.$
- ▶ ℝ² is not a subspace of ℝ³.
 However, ℝ³ does have subspaces that are *isomorphic* to ℝ².

- $H = \{\mathbf{0}\}$ is always a subspace.
- $H = \mathbb{P}_n$ is subspace of $V = \{f : \mathbb{R} \to \mathbb{R}\}.$
- ▶ R² is not a subspace of R³.
 However, R³ does have subspaces that are *isomorphic* to R².
 We will talk about vector space isomorphisms later.

- $H = \{\mathbf{0}\}$ is always a subspace.
- $H = \mathbb{P}_n$ is subspace of $V = \{f : \mathbb{R} \to \mathbb{R}\}.$
- ▶ ℝ² is not a subspace of ℝ³.
 However, ℝ³ does have subspaces that are *isomorphic* to ℝ².
 We will talk about vector space isomorphisms later.
- Is any plane in \mathbb{R}^n a subspace?

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

First, why is H a subset of V?

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.

(a) First show $\mathbf{0} \in H$.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.

- (a) First show $\mathbf{0} \in H$.
- (b) Show H is closed under addition.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.

- (a) First show $\mathbf{0} \in H$.
- (b) Show H is closed under addition.
- (c) Show H is closed under scalar multiplication.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in V. Then $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.

- (a) First show $\mathbf{0} \in H$.
- (b) Show H is closed under addition.
- (c) Show H is closed under scalar multiplication.

Note that we can use all the axioms of the ambient vector space V!

To show a subset of a vector space is a subspace we can always use the definition.

Let

$$H = \left\{ \begin{bmatrix} s+2t\\-t\\3s-7t \end{bmatrix} : s,t \in \mathbb{R} \right\} \subseteq \mathbb{R}^3.$$

Let

$$H = \left\{ egin{bmatrix} s+2t \ -t \ 3s-7t \end{bmatrix} : s,t \in \mathbb{R}
ight\} \subseteq \mathbb{R}^3.$$

How can we use the previous theorem to show H is a subspace?

Let

$$H = \left\{ \left[egin{array}{c} s+2t \ -t \ 3s-7t \end{array}
ight] : s,t\in \mathbb{R}
ight\} \subseteq \mathbb{R}^3.$$

How can we use the previous theorem to show H is a subspace? Well,

$$H = \operatorname{Span} \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-7 \end{bmatrix} \right\}.$$

To show that a subset is *not* a subspace, we just need to show that at least one of the axioms fails to be satisfied.

To show that a subset is *not* a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$H = \left\{ \begin{bmatrix} 3s \\ 2+5s \end{bmatrix} : s \in \mathbb{R} \right\}.$$

To show that a subset is *not* a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$\mathcal{H} = \left\{ \begin{bmatrix} 3s \\ 2+5s \end{bmatrix} : s \in \mathbb{R} \right\}.$$

How do we show H is not a subspace?