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Just for today

I Answers to mini-quiz
I Finish §3.2 properties of determinants
I §4.1 abstract vector spaces



§3.2 Examples

Let A =

 1 2 4
0 −1 1
1 0 2

 . We saw previously that det A = 4. Now

compute the determinants of B =

 1 2 4
0 −1 1
0 −2 −2

,

C =

 1 2 4
0 −1 1
0 0 −4

 ,D =

 2 4 8
0 −1 1
0 0 −4

 ,E =

 2 4 8
0 0 −4
0 −1 1

 .
We find that det B = det C = det A, det D = 2 det A, and
det E = − det D = −2 det A.
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§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon
form (not necessaryily reduced) via a sequence of row replacements
and row interchanges? Yes! How does this relate to determinants?
Let r be the number of row interchanges required to reduce A to
U. Then

det A =
{

(−1)r (product of pivots of U) if A is invertible
0 if A is not invertible

Theorem
A square matrix A is invertible if and only if det A 6= 0.
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§3.2 Theorem 5

Theorem
If A is an n × n matrix, the det AT = det A.
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§3.2 Theorem 6

Theorem
If A and B are n × n matrices, then det AB = (det A)(det B).
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§4.1 Definition of a vector space

Let F = R or C be the real or complex numbers.
We call F the field of scalars. A vector space over F is a
nonempty set V of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for
all u, v,w ∈ V , for all c, d ∈ F :

1. u + v ∈ V
2. u + v = v + u
3. (u + v) + w = u + (v + w)
4. There is a vector 0 such that u + 0 = u
5. There is a vector −u such that u + (−u) = 0
6. cu ∈ V
7. c(u + v) = cu + cv
8. (c + d)u = cu + du
9. c(du) = (cd)u

10. 1u = u
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§4.1 Basic properties

Try to prove the following properties using only the axioms...

(a) 0 is unique
(b) −u is unique
(c) 0u = 0
(d) c0 = 0
(e) −u = (−1)u
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§4.1 Examples of vector spaces

I V = Rn

I Let V = Pn denote the set of polynomials of degree at most
n. More precisely, (writing polynomials in the variable t)

Pn =

a0 + a1t1 + a2t2 + · · ·+ antn︸ ︷︷ ︸
p(t)

: ai ∈ F

 .

I V = {f : R→ R}
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§4.1 Definition of a subspace

Definition
A subspace of a vector space V is a subset H of V such that:

(a) 0 ∈ H.
(b) H is closed under vector addition: If u, v ∈ H, then u + v ∈ H.
(c) H is closed under scalar multiplication: If u ∈ H and λ ∈ F ,

then λu ∈ H.

Is a subspace of a vector space a vector space?
Is a vector space a subspace?
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I H = {0} is always a subspace.
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I R2 is not a subspace of R3.

However, R3 does have subspaces that are isomorphic to R2.
We will talk about vector space isomorphisms later.
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§4.1 Theorem 1

Theorem
Let v1, . . . , vp be vectors in V . Then H = Span{v1, . . . , vp} is a
subspace of V .

Proof.
First, why is H a subset of V ? For a subset H of V , to show H is
a subspace we are required to show H satisfies the 3 axioms.

(a) First show 0 ∈ H.
(b) Show H is closed under addition.
(c) Show H is closed under scalar multiplication.

Note that we can use all the axioms of the ambient vector space
V !
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§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always
use the definition. However, the previous theorem gives us another
way...

Let

H =


 s + 2t
−t

3s − 7t

 : s, t ∈ R

 ⊆ R3.

How can we use the previous theorem to show H is a subspace?
Well,

H = Span


 1

0
3

 ,
 2
−1
−7


 .
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§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that
at least one of the axioms fails to be satisfied.

Let

H =
{[

3s
2 + 5s

]
: s ∈ R

}
.

How do we show H is not a subspace?
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