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Just for today

> Answers to mini-quiz
» Finish §3.2 properties of determinants

» §4.1 abstract vector spaces
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Let A= |0 —1 1| . We saw previously that det A = 4. Now
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1 24
Let A= |0 —1 1| . We saw previously that det A = 4. Now
1 02
1 2 4
compute the determinantsof B= [0 -1 1],
0-2-2
1 2 4 2 4 8 2 4 8
c=|0-1 1|,D=|0-1 1(,E=1|0 0-4
0 0-4 0 0-4 0-1 1
We find that det B = det C = det A, det D = 2det A, and

det E = —det D = —2det A.
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Consider a square matrix A. Can we always reduce A to an echelon
form (not necessaryily reduced) via a sequence of row replacements
and row interchanges? Yes! How does this relate to determinants?
Let r be the number of row interchanges required to reduce A to

U. Then
det A — (—1)"(product of pivots of U) if A is invertible
N if Ais not invertible
Theorem

A square matrix A is invertible if and only if det A # 0.
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Theorem

If A is an n x n matrix, the det AT = det A.



§3.2 Theorem 6




§3.2 Theorem 6

Theorem

If A and B are n x n matrices, then det AB = (det A)(det B).
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Let F =R or C be the real or complex numbers.

We call F the field of scalars. A vector space over F is a
nonempty set V' of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for
allu,v,w e V, forall ¢,d € F:

ut+vevV

ut+v=v+u

S (ut+v)+w=u+(v+w)

. There is a vector 0 such that u+0 =u
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Let F =R or C be the real or complex numbers.
We call F the field of scalars. A vector space over F is a

nonempty set V' of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for

u,v,we V, forall c,d € F:

ut+vevV

ut+v=v+u

S (ut+v)+w=u+(v+w)

. There is a vector 0 such that u+0 =u

. There is a vector —u such that u+ (—u) =0
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Let F = R or C be the real or complex numbers. pa 2
We call F the field of scalars. A vector space over F is a
nonempty set V' of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for
allu,v,w e V, forall ¢,d € F:

ut+vevV

ut+v=v+u

S (ut+v)+w=u+(v+w)

. There is a vector 0 such that u+0 =u

. There is a vector —u such that u+ (—u) =0
cueV
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Let F =R or C be the real or complex numbers.

We call F the field of scalars. A vector space over F is a
nonempty set V' of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for

allu,v,w e V, forall ¢,d € F:

l.utveV
2.u+v=v+u

3 (u+v)+w=u+(v+w)
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There is a vector 0 such that u4+0=u

. There is a vector —u such that u+ (—u) =0
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Let F =R or C be the real or complex numbers.

We call F the field of scalars. A vector space over F is a
nonempty set V' of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for

allu,v,w e V, forall ¢,d € F:

lL.u+tveVv

2. u+v=v+u

3 (u+v)+w=u+(v+w)

4. There is a vector 0 such that u+0 =u
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There is a vector —u such that u+ (—u) =0
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§4.1 Definition of a vector space

Let F =R or C be the real or complex numbers.
We call F the field of scalars. A vector space over F is a
nonempty set V' of vectors. V comes equipped with addition and
scalar multiplication which must satisfy the following axioms. for
allu,v,w e V, forall ¢,d € F:

lL.u+veV

2.ut+v=v+u

3 (u+v)+w=u+(v+w)

4. There is a vector 0 such thatu+0=u

5. There is a vector —u such that u+ (—u) =0
6. cueV

7. c(u4v)=cu+cv

8. (c+d)u=cu+du

9. ¢(du) = (cd)u

10 lu=u



§4.1 Basic properties




§4.1 Basic properties

Try to prove the following properties using only the axioms...



§4.1 Basic properties




§4.1 Examples of vector spaces




§4.1 Examples of vector spaces

| 2 V:Rn



§4.1 Examples of vector spaces

> V:Rn

> Let V =P, denote the set of polynomials of degree at most
n.



§4.1 Examples of vector spaces

» V=R"
> Let V =P, denote the set of polynomials of degree at most
n. More precisely, (writing polynomials in the variable t)

P,={ay+ait* +axt’+---+a,t":a, € F
p(t)




§4.1 Examples of vector spaces

» V=R"
> Let V =P, denote the set of polynomials of degree at most
n. More precisely, (writing polynomials in the variable t)

P,={ay+ait* +axt’+---+a,t":a, € F
p(t)

» V={f:R>R}
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Definition
A subspace of a vector space V is a subset H of V such that:
(a) 0 e H.

(b) H is closed under vector addition: If u,v € H, thenu+v € H.

(c) His closed under scalar multiplication: If u € H and A € F,
then Au € H.

Is a subspace of a vector space a vector space?
Is a vector space a subspace?
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v

H = {0} is always a subspace.
H =P, is subspace of V = {f : R — R}.
R? is not a subspace of R3.

However, R3 does have subspaces that are isomorphic to R?.
We will talk about vector space isomorphisms later.

v

v

Is any plane in R"” a subspace?

v
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Theorem

Let vy,...,vp, be vectorsin V. Then H = Span{vy,...,vp} is a
subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is
a subspace we are required to show H satisfies the 3 axioms.

(2) First show 0 € H.

(b) Show H is closed under addition.

(c) Show H is closed under scalar multiplication.



§4.1 Theorem 1

Theorem

Let vy,...,vp, be vectorsin V. Then H = Span{vy,...,vp} is a
subspace of V.

Proof.

First, why is H a subset of V? For a subset H of V, to show H is
a subspace we are required to show H satisfies the 3 axioms.

(a) First show 0 € H.

(b) Show H is closed under addition.

(c) Show H is closed under scalar multiplication.

Note that we can use all the axioms of the ambient vector space
4 O
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To show a subset of a vector space is a subspace we can always 25
use the definition. However, the previous theorem gives us another
way...

Let

s+ 2t
H= —t cs,te Ry CR3.
3s — Tt

How can we use the previous theorem to show H is a subspace?
Well,
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§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that
at least one of the axioms fails to be satisfied.

i[5 +en)

How do we show H is not a subspace?

Let



