Lecture 12

Math 22 Summer 2017
July 14, 2017

Just for today

- Answers to mini-quiz
- Finish §3.2 properties of determinants
- §4.1 abstract vector spaces

§3.2 Examples

§3.2 Examples

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$.

§3.2 Examples

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$.

§3.2 Examples

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.
We find that $\operatorname{det} B=\operatorname{det} C=\operatorname{det} A$,

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.
We find that $\operatorname{det} B=\operatorname{det} C=\operatorname{det} A$, $\operatorname{det} D=2 \operatorname{det} A$,

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.
We find that $\operatorname{det} B=\operatorname{det} C=\operatorname{det} A$, $\operatorname{det} D=2 \operatorname{det} A$, and $\operatorname{det} E=-\operatorname{det} D=-2 \operatorname{det} A$.

§3.2 Theorem 4

§3.2 Theorem 4

Consider a square matrix A.

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges?

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes!

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants?

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U.

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U. Then

$$
\operatorname{det} A= \begin{cases}(-1)^{r}(\text { product of pivots of } U) & \text { if } A \text { is invertible } \\ 0 & \text { if } A \text { is not invertible }\end{cases}
$$

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U. Then

$$
\operatorname{det} A= \begin{cases}(-1)^{r}(\text { product of pivots of } U) & \text { if } A \text { is invertible } \\ 0 & \text { if } A \text { is not invertible }\end{cases}
$$

Theorem

A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

§3.2 Theorem 5

§3.2 Theorem 5

Theorem
If A is an $n \times n$ matrix, the $\operatorname{det} A^{T}=\operatorname{det} A$.

§3.2 Theorem 6

§3.2 Theorem 6

Theorem
If A and B are $n \times n$ matrices, then $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.

§4.1 Definition of a vector space

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors.

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms.

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

$$
\text { 1. } \mathbf{u}+\mathbf{v} \in V
$$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

$$
\begin{aligned}
& \text { 1. } \mathbf{u}+\mathbf{v} \in V \\
& \text { 2. } \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
\end{aligned}
$$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

$$
\begin{aligned}
& \text { 1. } \mathbf{u}+\mathbf{v} \in V \\
& \text { 2. } \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
& \text { 3. }(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
\end{aligned}
$$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. There is a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. There is a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u} \in V$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. There is a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u} \in V$
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. There is a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u} \in V$
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. There is a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u} \in V$
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$

§4.1 Definition of a vector space

Let $F=\mathbb{R}$ or \mathbb{C} be the real or complex numbers.
We call F the field of scalars. A vector space over F is a nonempty set V of vectors. V comes equipped with addition and scalar multiplication which must satisfy the following axioms. for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, for all $c, d \in F$:

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. There is a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u} \in V$
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $1 \mathbf{u}=\mathbf{u}$
§4.1 Basic properties

§4.1 Basic properties

Try to prove the following properties using only the axioms...

§4.1 Basic properties

Try to prove the following properties using only the axioms...
(a) $\mathbf{0}$ is unique
(b) $-\mathbf{u}$ is unique
(c) $\mathbf{0 u}=\mathbf{0}$
(d) $\mathbf{c 0}=\mathbf{0}$
(e) $-\mathbf{u}=(-1) \mathbf{u}$
§4.1 Examples of vector spaces

§4.1 Examples of vector spaces

- $V=\mathbb{R}^{n}$

§4.1 Examples of vector spaces

- $V=\mathbb{R}^{n}$
- Let $V=\mathbb{P}_{n}$ denote the set of polynomials of degree at most n.

§4.1 Examples of vector spaces

- $V=\mathbb{R}^{n}$
- Let $V=\mathbb{P}_{n}$ denote the set of polynomials of degree at most n. More precisely, (writing polynomials in the variable t)

$$
\mathbb{P}_{n}=\{\underbrace{a_{0}+a_{1} t^{1}+a_{2} t^{2}+\cdots+a_{n} t^{n}}_{\mathbf{p}(t)}: a_{i} \in F\} .
$$

§4.1 Examples of vector spaces

- $V=\mathbb{R}^{n}$
- Let $V=\mathbb{P}_{n}$ denote the set of polynomials of degree at most n. More precisely, (writing polynomials in the variable t)

$$
\mathbb{P}_{n}=\{\underbrace{a_{0}+a_{1} t^{1}+a_{2} t^{2}+\cdots+a_{n} t^{n}}_{\mathbf{p}(t)}: a_{i} \in F\} .
$$

- $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$

§4.1 Definition of a subspace

§4.1 Definition of a subspace

Definition

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that: (a) $\mathbf{0} \in H$.

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:
(a) $\mathbf{0} \in H$.
(b) H is closed under vector addition:

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:
(a) $\mathbf{0} \in H$.
(b) H is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$.

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:
(a) $\mathbf{0} \in H$.
(b) H is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$.
(c) H is closed under scalar multiplication:

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:
(a) $\mathbf{0} \in H$.
(b) H is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$.
(c) H is closed under scalar multiplication: If $\mathbf{u} \in H$ and $\lambda \in F$, then $\lambda \mathbf{u} \in H$.

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:
(a) $\mathbf{0} \in H$.
(b) H is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$.
(c) H is closed under scalar multiplication: If $\mathbf{u} \in H$ and $\lambda \in F$, then $\lambda \mathbf{u} \in H$.

Is a subspace of a vector space a vector space?

§4.1 Definition of a subspace

Definition

A subspace of a vector space V is a subset H of V such that:
(a) $\mathbf{0} \in H$.
(b) H is closed under vector addition: If $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$.
(c) H is closed under scalar multiplication: If $\mathbf{u} \in H$ and $\lambda \in F$, then $\lambda \mathbf{u} \in H$.

Is a subspace of a vector space a vector space?
Is a vector space a subspace?

§4.1 Examples/non-examples of subspaces

§4.1 Examples/non-examples of subspaces

- $H=\{0\}$ is always a subspace.

§4.1 Examples/non-examples of subspaces

- $H=\{\mathbf{0}\}$ is always a subspace.
- $H=\mathbb{P}_{n}$ is subspace of $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$.

§4.1 Examples/non-examples of subspaces

- $H=\{\mathbf{0}\}$ is always a subspace.
- $H=\mathbb{P}_{n}$ is subspace of $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$.
$-\mathbb{R}^{2}$ is not a subspace of \mathbb{R}^{3}.

§4.1 Examples/non-examples of subspaces

- $H=\{\mathbf{0}\}$ is always a subspace.
- $H=\mathbb{P}_{n}$ is subspace of $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$.
$-\mathbb{R}^{2}$ is not a subspace of \mathbb{R}^{3}. However, \mathbb{R}^{3} does have subspaces that are isomorphic to \mathbb{R}^{2}.

§4.1 Examples/non-examples of subspaces

- $H=\{\mathbf{0}\}$ is always a subspace.
- $H=\mathbb{P}_{n}$ is subspace of $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$.
$-\mathbb{R}^{2}$ is not a subspace of \mathbb{R}^{3}. However, \mathbb{R}^{3} does have subspaces that are isomorphic to \mathbb{R}^{2}. We will talk about vector space isomorphisms later.

§4.1 Examples/non-examples of subspaces

- $H=\{\mathbf{0}\}$ is always a subspace.
- $H=\mathbb{P}_{n}$ is subspace of $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$.
$-\mathbb{R}^{2}$ is not a subspace of \mathbb{R}^{3}.
However, \mathbb{R}^{3} does have subspaces that are isomorphic to \mathbb{R}^{2}. We will talk about vector space isomorphisms later.
- Is any plane in \mathbb{R}^{n} a subspace?
§4.1 Theorem 1

§4.1 Theorem 1

Theorem
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

First, why is H a subset of V ?

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

First, why is H a subset of V ? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

First, why is H a subset of V ? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.
(a) First show $\mathbf{0} \in H$.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

First, why is H a subset of V ? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.
(a) First show $\mathbf{0} \in H$.
(b) Show H is closed under addition.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

First, why is H a subset of V ? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.
(a) First show $\mathbf{0} \in H$.
(b) Show H is closed under addition.
(c) Show H is closed under scalar multiplication.

§4.1 Theorem 1

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in V. Then $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof.

First, why is H a subset of V ? For a subset H of V, to show H is a subspace we are required to show H satisfies the 3 axioms.
(a) First show $\mathbf{0} \in H$.
(b) Show H is closed under addition.
(c) Show H is closed under scalar multiplication.

Note that we can use all the axioms of the ambient vector space V !

§4.1 Proving a set is a subspace

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition.

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

Let

$$
H=\left\{\left[\begin{array}{c}
s+2 t \\
-t \\
3 s-7 t
\end{array}\right]: s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

Let

$$
H=\left\{\left[\begin{array}{c}
s+2 t \\
-t \\
3 s-7 t
\end{array}\right]: s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

How can we use the previous theorem to show H is a subspace?

§4.1 Proving a set is a subspace

To show a subset of a vector space is a subspace we can always use the definition. However, the previous theorem gives us another way...

Let

$$
H=\left\{\left[\begin{array}{c}
s+2 t \\
-t \\
3 s-7 t
\end{array}\right]: s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

How can we use the previous theorem to show H is a subspace? Well,

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
-7
\end{array}\right]\right\} .
$$

§4.1 Proving a set is not a subspace

§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that at least one of the axioms fails to be satisfied.

§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$
H=\left\{\left[\begin{array}{c}
3 s \\
2+5 s
\end{array}\right]: s \in \mathbb{R}\right\}
$$

§4.1 Proving a set is not a subspace

To show that a subset is not a subspace, we just need to show that at least one of the axioms fails to be satisfied.

Let

$$
H=\left\{\left[\begin{array}{c}
3 s \\
2+5 s
\end{array}\right]: s \in \mathbb{R}\right\}
$$

How do we show H is not a subspace?

