Lecture 11

Math 22 Summer 2017
July 12, 2017

Just for today

- "Quiz" today
- §3.1,§3.2 on determinants

§3.1 $A_{i j}$ submatrices

§3.1 $A_{i j}$ submatrices

Definition

§3.1 $A_{i j}$ submatrices

Definition

Let A be an $n \times n$ matrix.

§3.1 $A_{i j}$ submatrices

Definition

Let A be an $n \times n$ matrix. The $A_{i j}$ submatrix of A is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the row i and column j.

§3.1 $A_{i j}$ submatrices

Definition

Let A be an $n \times n$ matrix. The $A_{i j}$ submatrix of A is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the row i and column j.

For example,

§3.1 $A_{i j}$ submatrices

Definition

Let A be an $n \times n$ matrix. The $A_{i j}$ submatrix of A is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the row i and column j.

For example, for $A=\left[\begin{array}{rrrr}2 & -1 & 0 & -5 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 3\end{array}\right]$ we have,

§3.1 $A_{i j}$ submatrices

Definition

Let A be an $n \times n$ matrix. The $A_{i j}$ submatrix of A is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the row i and column j.

For example, for $A=\left[\begin{array}{rrrr}2 & -1 & 0 & -5 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 3\end{array}\right]$ we have, $A_{23}=\left[\begin{array}{rrr}2 & -1 & -5 \\ 0 & 1 & -2 \\ 0 & 0 & 3\end{array}\right]$.

§3.1 Recursive definition of determinants

§3.1 Recursive definition of determinants

Recall how to compute the determinant of a 2×2 matrix.

§3.1 Recursive definition of determinants

Recall how to compute the determinant of a 2×2 matrix. We now define determinants of $n \times n$ matrices inductively.

§3.1 Recursive definition of determinants

Recall how to compute the determinant of a 2×2 matrix. We now define determinants of $n \times n$ matrices inductively.

Definition

§3.1 Recursive definition of determinants

Recall how to compute the determinant of a 2×2 matrix. We now define determinants of $n \times n$ matrices inductively.

Definition

The determinant of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is given by:

§3.1 Recursive definition of determinants

Recall how to compute the determinant of a 2×2 matrix. We now define determinants of $n \times n$ matrices inductively.

Definition

The determinant of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is given by:

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j} .
\end{aligned}
$$

§3.1 Cofactor expansion

§3.1 Cofactor expansion

Definition

§3.1 Cofactor expansion

Definition

Let A be an $n \times n$ matrix with $A=\left(a_{i j}\right)$.

§3.1 Cofactor expansion

Definition

Let A be an $n \times n$ matrix with $A=\left(a_{i j}\right)$. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} \in \mathbb{R}
$$

§3.1 Cofactor expansion

Definition

Let A be an $n \times n$ matrix with $A=\left(a_{i j}\right)$. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} \in \mathbb{R}
$$

Note that this simplifies writing determinants.

§3.1 Cofactor expansion

Definition

Let A be an $n \times n$ matrix with $A=\left(a_{i j}\right)$. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} \in \mathbb{R}
$$

Note that this simplifies writing determinants. That is,

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{1 j} C_{1 j} .
$$

§3.1 Cofactor expansion

Definition

Let A be an $n \times n$ matrix with $A=\left(a_{i j}\right)$. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} \in \mathbb{R}
$$

Note that this simplifies writing determinants. That is,

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{1 j} C_{1 j} .
$$

This equation is an example of cofactor expansion along the first row of A and is just a restatement of our definition of $\operatorname{det} A$.

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$.

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. Compute $\operatorname{det} A$.

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. Compute $\operatorname{det} A$.
$\operatorname{det} A=(-1)^{1+1} a_{11} \operatorname{det} A_{11}+(-1)^{1+2} a_{12} \operatorname{det} A_{12}+(-1)^{1+3} a_{13} \operatorname{det} A_{13}$

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. Compute $\operatorname{det} A$.
$\operatorname{det} A=(-1)^{1+1} a_{11} \operatorname{det} A_{11}+(-1)^{1+2} a_{12} \operatorname{det} A_{12}+(-1)^{1+3} a_{13} \operatorname{det} A_{13}$
We see that $\operatorname{det} A=4$.
§3.1 Theorem 1

§3.1 Theorem 1

Using the definition we do cofactor expansion along the first row of A.

§3.1 Theorem 1

Using the definition we do cofactor expansion along the first row of A. Although we will not prove this in class (it's actually easier to prove statements about determinants using alternative definitions), cofactor expansion along any row or column yields the same result for $\operatorname{det} A$.

§3.1 Theorem 1

Using the definition we do cofactor expansion along the first row of A. Although we will not prove this in class (it's actually easier to prove statements about determinants using alternative definitions), cofactor expansion along any row or column yields the same result for $\operatorname{det} A$. Let's see how this works in our example.

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$.

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. Compute $\operatorname{det} A$ using cofactor expansion along the second column.

§3.1 Example

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. Compute $\operatorname{det} A$ using cofactor expansion along the second column. We get

$$
\begin{aligned}
\operatorname{det} A & =(-1)^{1+2} a_{12} \operatorname{det} A_{12}+(-1)^{2+2} a_{22} \operatorname{det} A_{22}+(-1)^{3+2} a_{32} \operatorname{det} A_{32} \\
& =4
\end{aligned}
$$

§3.1 More examples

$$
\text { Let } A=\left[\begin{array}{rrrr}
4 & -1 & 5 & 1 \\
0 & 2 & 1 & -2 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

§3.1 More examples

$$
\text { Let } A=\left[\begin{array}{rrrr}
4 & -1 & 5 & 1 \\
0 & 2 & 1 & -2 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] . \text { Compute } \operatorname{det} A .
$$

§3.1 More examples

Let $A=\left[\begin{array}{rrrr}4 & -1 & 5 & 1 \\ 0 & 2 & 1 & -2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$. Compute $\operatorname{det} A$. Do you notice a shortcut to compute this determinant?

§3.1 Theorem 2

§3.1 Theorem 2

Theorem

If A is a triangular matrix, the $\operatorname{det} A$ is the product of the entries on the main diagonal of A.

§3.2 Theorem 3

§3.2 Theorem 3

Theorem

§3.2 Theorem 3

Theorem
Let A be a square matrix.

§3.2 Theorem 3

Theorem
Let A be a square matrix.
Suppose B is obtained by from A by adding a multiple of one row to another.

§3.2 Theorem 3

Theorem
Let A be a square matrix.
Suppose B is obtained by from A by adding a multiple of one row to another. Then $\operatorname{det} B=\operatorname{det} A$.

Theorem
Let A be a square matrix.
Suppose B is obtained by from A by adding a multiple of one row to another. Then $\operatorname{det} B=\operatorname{det} A$.

Suppose two rows of A are interchanged to produce B.

Theorem

Let A be a square matrix.
Suppose B is obtained by from A by adding a multiple of one row to another. Then $\operatorname{det} B=\operatorname{det} A$.

Suppose two rows of A are interchanged to produce B. Then $\operatorname{det} B=-\operatorname{det} A$.

Theorem

Let A be a square matrix.
Suppose B is obtained by from A by adding a multiple of one row to another. Then $\operatorname{det} B=\operatorname{det} A$.

Suppose two rows of A are interchanged to produce B. Then $\operatorname{det} B=-\operatorname{det} A$.

Suppose B is obtained from A by scaling a row by λ.

Theorem

Let A be a square matrix.
Suppose B is obtained by from A by adding a multiple of one row to another. Then $\operatorname{det} B=\operatorname{det} A$.

Suppose two rows of A are interchanged to produce B. Then $\operatorname{det} B=-\operatorname{det} A$.

Suppose B is obtained from A by scaling a row by λ. Then $\operatorname{det} B=\lambda \operatorname{det} A$.

§3.2 Examples

§3.2 Examples

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$.

§3.2 Examples

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$.

§3.2 Examples

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.
We find that $\operatorname{det} B=\operatorname{det} C=\operatorname{det} A$,

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.
We find that $\operatorname{det} B=\operatorname{det} C=\operatorname{det} A$, $\operatorname{det} D=2 \operatorname{det} A$,

Let $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 0 & 2\end{array}\right]$. We saw previously that $\operatorname{det} A=4$. Now
compute the determinants of $B=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]$,
$C=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], D=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & -4\end{array}\right], E=\left[\begin{array}{rrr}2 & 4 & 8 \\ 0 & 0 & -4 \\ 0 & -1 & 1\end{array}\right]$.
We find that $\operatorname{det} B=\operatorname{det} C=\operatorname{det} A$, $\operatorname{det} D=2 \operatorname{det} A$, and $\operatorname{det} E=-\operatorname{det} D=-2 \operatorname{det} A$.

§3.2 Theorem 4

§3.2 Theorem 4

Consider a square matrix A.

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges?

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes!

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants?

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U.

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U. Then

$$
\operatorname{det} A= \begin{cases}(-1)^{r}(\text { product of pivots of } U) & \text { if } A \text { is invertible } \\ 0 & \text { if } A \text { is not invertible }\end{cases}
$$

§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon form (not necessaryily reduced) via a sequence of row replacements and row interchanges? Yes! How does this relate to determinants? Let r be the number of row interchanges required to reduce A to U. Then

$$
\operatorname{det} A= \begin{cases}(-1)^{r}(\text { product of pivots of } U) & \text { if } A \text { is invertible } \\ 0 & \text { if } A \text { is not invertible }\end{cases}
$$

Theorem

A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

§3.2 Theorem 5

§3.2 Theorem 5

Theorem
If A is an $n \times n$ matrix, the $\operatorname{det} A^{T}=\operatorname{det} A$.

§3.2 Theorem 6

§3.2 Theorem 6

Theorem
If A and B are $n \times n$ matrices, then $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.

