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Just for today

I “Quiz” today
I §3.1,§3.2 on determinants



§3.1 Aij submatrices

Definition
Let A be an n × n matrix. The Aij submatrix of A is the
(n− 1)× (n− 1) matrix obtained from A by deleting the row i and
column j .

For example, for A =


2 −1 0 −5
1 0 3 −4
0 1 2 −2
0 0 0 3

 we have, A23 =

 2 −1 −5
0 1 −2
0 0 3

 .
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§3.1 Recursive definition of determinants

Recall how to compute the determinant of a 2× 2 matrix. We now
define determinants of n × n matrices inductively.

Definition
The determinant of an n × n matrix A = (aij) is given by:

det A = a11 det A11 − a12 det A12 + · · ·+ (−1)1+na1n det A1n

=
n∑

j=1
(−1)1+ja1j det A1j .
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§3.1 Cofactor expansion

Definition
Let A be an n×n matrix with A = (aij). The (i , j)-cofactor of A is

Cij = (−1)i+j det Aij ∈ R.

Note that this simplifies writing determinants. That is,

det A =
n∑

j=1
a1jC1j .

This equation is an example of cofactor expansion along the
first row of A and is just a restatement of our definition of det A.
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§3.1 Example

Let A =

 1 2 4
0 −1 1
1 0 2

 .

Compute det A.

det A = (−1)1+1a11 det A11 + (−1)1+2a12 det A12 + (−1)1+3a13 det A13

We see that det A = 4.
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§3.1 Theorem 1

Using the definition we do cofactor expansion along the first row of
A. Although we will not prove this in class (it’s actually easier to
prove statements about determinants using alternative definitions),
cofactor expansion along any row or column yields the same result
for det A. Let’s see how this works in our example.
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§3.1 Theorem 2

Theorem
If A is a triangular matrix, the det A is the product of the entries
on the main diagonal of A.
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§3.2 Theorem 3

Theorem
Let A be a square matrix.

Suppose B is obtained by from A by adding a multiple of one row
to another. Then det B = det A.

Suppose two rows of A are interchanged to produce B. Then
det B = − det A.

Suppose B is obtained from A by scaling a row by λ. Then
det B = λ det A.
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§3.2 Examples

Let A =

 1 2 4
0 −1 1
1 0 2

 . We saw previously that det A = 4. Now

compute the determinants of B =

 1 2 4
0 −1 1
0 −2 −2

,

C =

 1 2 4
0 −1 1
0 0 −4

 ,D =

 2 4 8
0 −1 1
0 0 −4

 ,E =

 2 4 8
0 0 −4
0 −1 1

 .
We find that det B = det C = det A, det D = 2 det A, and
det E = − det D = −2 det A.
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§3.2 Theorem 4

Consider a square matrix A. Can we always reduce A to an echelon
form (not necessaryily reduced) via a sequence of row replacements
and row interchanges? Yes! How does this relate to determinants?
Let r be the number of row interchanges required to reduce A to
U. Then

det A =
{

(−1)r (product of pivots of U) if A is invertible
0 if A is not invertible

Theorem
A square matrix A is invertible if and only if det A 6= 0.
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