

Lecture 10X

Math 22 Summer 2017 July 11, 2017

- "Quiz" Wednesday to practice for Midterm
- Midterm will cover material through §2.3 (Today)

▶ §2.3 Characteristics of invertible matrices

§2.3 The invertible matrix theorem

Let A be a square $n \times n$ matrix.

§2.3 The invertible matrix theorem

1769

Let A be a square $n \times n$ matrix. The following are equivalent.

§2.3 The invertible matrix theorem

Let A be a square $n \times n$ matrix. The following are equivalent.

1769

- (a) A is an invertible matrix.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) The matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (g) $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- (j) There is an $n \times n$ matrix C such that $CA = I_n$.
- (k) There is an $n \times n$ matrix D such that $AD = I_n$.
- (I) A^T is an invertible matrix.

§2.3 Invertibe linear transformations

Definition

Definition

A linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$
 $T(S(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$

§2.3 Theorem 9

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A.

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix.

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. Moreover, if T is invertible, then the map $S : \mathbb{R}^n \to \mathbb{R}^n$ defined by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique inverse linear transformation of T.

§2.3 Proof of Theorem 9

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow):

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T.

 (\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T.

(⇒): Suppose *T* is invertible. By the IMT, it suffices to show *T* is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of *T*).

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of T) maps to **b** under the map T.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of T) maps to **b** under the map T. (uniqueness):

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of T) maps to **b** under the map T. (uniqueness): Suppose S' is another inverse of T.

(\Leftarrow): Suppose *A* is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that *S* works as an inverse of *T*. (\Rightarrow): Suppose *T* is invertible. By the IMT, it suffices to show *T* is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of *T*). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of *T*) maps to **b** under the map *T*. (uniqueness): Suppose *S'* is another inverse of *T*. Let $\mathbf{b} \in \mathbb{R}^n$ be arbitrary.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of T) maps to \mathbf{b} under the map T. (uniqueness): Suppose S' is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^n$ be arbitrary. By the IMT there exists $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = \mathbf{b}$ (T is onto).

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of T) maps to \mathbf{b} under the map T. (uniqueness): Suppose S' is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^n$ be arbitrary. By the IMT there exists $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = \mathbf{b}$ (T is onto). But this shows that $S(\mathbf{b}) = S'(\mathbf{b})$ since

$$S(\underbrace{T(\mathbf{x})}_{\mathbf{b}}) = S'(\underbrace{T(\mathbf{x})}_{\mathbf{b}}) = \mathbf{x}.$$

Since **b** was arbitrary, we see that $S(\mathbf{b}) = S'(\mathbf{b})$ for all $\mathbf{b} \in \mathbb{R}^n$.

(\Leftarrow): Suppose A is invertible and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. then verify that S works as an inverse of T. (\Rightarrow): Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^n$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^n$ (domain of T) maps to \mathbf{b} under the map T. (uniqueness): Suppose S' is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^n$ be arbitrary. By the IMT there exists $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = \mathbf{b}$ (T is onto). But this shows that $S(\mathbf{b}) = S'(\mathbf{b})$ since

$$S(\underbrace{T(\mathbf{x})}_{\mathbf{b}}) = S'(\underbrace{T(\mathbf{x})}_{\mathbf{b}}) = \mathbf{x}.$$

Since **b** was arbitrary, we see that $S(\mathbf{b}) = S'(\mathbf{b})$ for all $\mathbf{b} \in \mathbb{R}^n$. That is, they are the same.

- (a) A is an invertible matrix.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) The matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (g) $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- (j) There is an $n \times n$ matrix C such that $CA = I_n$.
- (k) There is an $n \times n$ matrix D such that $AD = I_n$.
- (I) A^T is an invertible matrix.

