Lecture 10X

Math 22 Summer 2017
July 11, 2017

Reminders/Announcements

- "Quiz" Wednesday to practice for Midterm
- Midterm will cover material through §2.3 (Today)

Just for today

- §2.3 Characteristics of invertible matrices

§2.3 The invertible matrix theorem

§2.3 The invertible matrix theorem

Let A be a square $n \times n$ matrix.

§2.3 The invertible matrix theorem

Let A be a square $n \times n$ matrix. The following are equivalent.

§2.3 The invertible matrix theorem

Let A be a square $n \times n$ matrix. The following are equivalent.
(a) A is an invertible matrix.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) The matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
(g) $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There is an $n \times n$ matrix C such that $C A=I_{n}$.
(k) There is an $n \times n$ matrix D such that $A D=I_{n}$.
(I) A^{T} is an invertible matrix.

§2.3 Invertibe linear transformations

§2.3 Invertibe linear transformations

Definition

§2.3 Invertibe linear transformations

Definition

A linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{array}{ll}
S(T(\mathbf{x}))=\mathbf{x} & \text { for all } \mathbf{x} \in \mathbb{R}^{n} \\
T(S(\mathbf{x}))=\mathbf{x} & \text { for all } \mathbf{x} \in \mathbb{R}^{n}
\end{array}
$$

§2.3 Theorem 9

§2.3 Theorem 9

Theorem

§2.3 Theorem 9

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard matrix A.

§2.3 Theorem 9

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix.

§2.3 Theorem 9

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. Moreover, if T is invertible, then the map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $S(\mathbf{x})=A^{-1} \mathbf{x}$ is the unique inverse linear transformation of T.

§2.3 Proof of Theorem 9

§2.3 Proof of Theorem 9

Proof.

§2.3 Proof of Theorem 9

Proof.
$(\Leftarrow):$

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) :

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T).

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T. (uniqueness):

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T.
(uniqueness): Suppose S^{\prime} is another inverse of T.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T.
(uniqueness): Suppose S^{\prime} is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^{n}$ be arbitrary.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T.
(uniqueness): Suppose S^{\prime} is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^{n}$ be arbitrary. By the IMT there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $T(\mathbf{x})=\mathbf{b}(T$ is onto).

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T.
(uniqueness): Suppose S^{\prime} is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^{n}$ be arbitrary. By the IMT there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $T(\mathbf{x})=\mathbf{b}(T$ is onto). But this shows that $S(\mathbf{b})=S^{\prime}(\mathbf{b})$ since

$$
S(\underbrace{T(\mathbf{x})}_{\mathbf{b}})=S^{\prime}(\underbrace{T(\mathbf{x})}_{\mathbf{b}})=\mathbf{x} .
$$

Since \mathbf{b} was arbitrary, we see that $S(\mathbf{b})=S^{\prime}(\mathbf{b})$ for all $\mathbf{b} \in \mathbb{R}^{n}$.

§2.3 Proof of Theorem 9

Proof.

(\Leftarrow) : Suppose A is invertible and let $S(\mathbf{x})=A^{-1} \mathbf{x}$. then verify that S works as an inverse of T.
(\Rightarrow) : Suppose T is invertible. By the IMT, it suffices to show T is onto. To do this, let $\mathbf{b} \in \mathbb{R}^{n}$ (codomain of T). Then $S(\mathbf{b}) \in \mathbb{R}^{n}$ (domain of T) maps to \mathbf{b} under the map T.
(uniqueness): Suppose S^{\prime} is another inverse of T. Let $\mathbf{b} \in \mathbb{R}^{n}$ be arbitrary. By the IMT there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $T(\mathbf{x})=\mathbf{b}(T$ is onto). But this shows that $S(\mathbf{b})=S^{\prime}(\mathbf{b})$ since

$$
S(\underbrace{T(\mathbf{x})}_{\mathbf{b}})=S^{\prime}(\underbrace{T(\mathbf{x})}_{\mathbf{b}})=\mathbf{x} .
$$

Since \mathbf{b} was arbitrary, we see that $S(\mathbf{b})=S^{\prime}(\mathbf{b})$ for all $\mathbf{b} \in \mathbb{R}^{n}$. That is, they are the same.

§2.3 Classwork

(a) A is an invertible matrix.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) The matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
(g) $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There is an $n \times n$ matrix C such that $C A=I_{n}$.
(k) There is an $n \times n$ matrix D such that $A D=I_{n}$.
(I) A^{T} is an invertible matrix.

§2.3 Proof of IMT

- $(a) \Longrightarrow(j) \Longrightarrow(d) \Longrightarrow(c) \Longrightarrow(b) \Longrightarrow(a)$
- $(a) \Longrightarrow(k) \Longrightarrow(g) \Longrightarrow(a)$
- $(g) \Longleftrightarrow(h) \Longleftrightarrow(i)$
$\triangleright(d) \Longleftrightarrow(e) \Longleftrightarrow(f)$
- $(a) \Longleftrightarrow(I)$

