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Reminders/Announcements

I “Quiz” Wednesday to practice for Midterm
I Midterm will cover material through §2.3 (Today)



Just for today

I §2.3 Characteristics of invertible matrices



§2.3 The invertible matrix theorem

Let A be a square n × n matrix. The following are equivalent.

(a) A is an invertible matrix.
(b) A is row equivalent to In.
(c) A has n pivot positions.
(d) The matrix equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation x 7→ Ax is one-to-one.
(g) Ax = b has at least one solution for each b in Rn.
(h) The columns of A span Rn.
(i) The linear transformation x 7→ Ax is onto.
(j) There is an n × n matrix C such that CA = In.
(k) There is an n × n matrix D such that AD = In.
(l) AT is an invertible matrix.
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§2.3 Invertibe linear transformations

Definition
A linear map T : Rn → Rn is said to be invertible if there exists a
function S : Rn → Rn such that

S(T (x)) = x for all x ∈ Rn

T (S(x)) = x for all x ∈ Rn



§2.3 Invertibe linear transformations

Definition

A linear map T : Rn → Rn is said to be invertible if there exists a
function S : Rn → Rn such that

S(T (x)) = x for all x ∈ Rn

T (S(x)) = x for all x ∈ Rn



§2.3 Invertibe linear transformations

Definition
A linear map T : Rn → Rn is said to be invertible if there exists a
function S : Rn → Rn such that

S(T (x)) = x for all x ∈ Rn

T (S(x)) = x for all x ∈ Rn



§2.3 Theorem 9

Theorem
Let T : Rn → Rn be a linear transformation with standard matrix
A. Then T is invertible if and only if A is an invertible matrix.
Moreover, if T is invertible, then the map S : Rn → Rn defined by
S(x) = A−1x is the unique inverse linear transformation of T .
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§2.3 Proof of Theorem 9

Proof.
(⇐): Suppose A is invertible and let S(x) = A−1x. then verify
that S works as an inverse of T .
(⇒): Suppose T is invertible. By the IMT, it suffices to show T is
onto. To do this, let b ∈ Rn (codomain of T ). Then S(b) ∈ Rn

(domain of T ) maps to b under the map T .
(uniqueness): Suppose S ′ is another inverse of T . Let b ∈ Rn be
arbitrary. By the IMT there exists x ∈ Rn such that T (x) = b (T
is onto). But this shows that S(b) = S ′(b) since

S(T (x)︸ ︷︷ ︸
b

) = S ′(T (x)︸ ︷︷ ︸
b

) = x.

Since b was arbitrary, we see that S(b) = S ′(b) for all b ∈ Rn.
That is, they are the same.
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§2.3 Classwork

(a) A is an invertible matrix.
(b) A is row equivalent to In.
(c) A has n pivot positions.
(d) The matrix equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
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(g) Ax = b has at least one solution for each b in Rn.
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§2.3 Proof of IMT

I (a) =⇒ (j) =⇒ (d) =⇒ (c) =⇒ (b) =⇒ (a)
I (a) =⇒ (k) =⇒ (g) =⇒ (a)
I (g) ⇐⇒ (h) ⇐⇒ (i)
I (d) ⇐⇒ (e) ⇐⇒ (f )
I (a) ⇐⇒ (l)


