Lecture 09

Math 22 Summer 2017
July 10, 2017

Reminders/Announcements

- X-hour Tuesday (§2.3)
- "Quiz" Wednesday to practice for Midterm
- Midterm will cover material through §2.3

Just for today

- Practice problems about inverses
- More about matrices: $\S 2.1 / \S 2.2$ powers and transpose
- $\S 1.10$ Linear difference equations

§2.2 Classwork

§2.2 Classwork

\Rightarrow Find A^{-1} for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

§2.2 Classwork

- Find A^{-1} for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
- Use A^{-1} from the previous part to solve $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.

§2.2 Classwork

- Find A^{-1} for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
- Use A^{-1} from the previous part to solve $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
- Find the sequence of elementary matrices that transform the above A to I_{2}.

§2.1 Powers of a matrix

§2.1 Powers of a matrix

Definition

§2.1 Powers of a matrix

Definition

Let A be an $\times n$ matrix and $k \in\{0,1,2, \ldots\}$.

§2.1 Powers of a matrix

Definition

Let A be an $\times n$ matrix and $k \in\{0,1,2, \ldots\}$. We define the k-th power of A by

$$
A^{k}:=\underbrace{A \cdots A}_{k \text { times }} .
$$

§2.1 Powers of a matrix

Definition

Let A be an $\times n$ matrix and $k \in\{0,1,2, \ldots\}$. We define the k-th power of A by

$$
A^{k}:=\underbrace{A \cdots A}_{k \text { times }} .
$$

What is the k-th power of a diagonal matrix?

§2.1 Transpose of a matrix

§2.1 Transpose of a matrix

Definition

§2.1 Transpose of a matrix

Definition

Let A be an $m \times n$ matrix.

§2.1 Transpose of a matrix

Definition

Let A be an $m \times n$ matrix. The transpose of $A\left(\right.$ denoted $\left.A^{T}\right)$ is the $n \times m$ matrix obtained from A by interchanging rows and columns.

§2.1 Transpose of a matrix

Definition

Let A be an $m \times n$ matrix. The transpose of $A\left(\right.$ denoted $\left.A^{T}\right)$ is the $n \times m$ matrix obtained from A by interchanging rows and columns.

What's an example?

§2.1 Theorem 3

§2.1 Theorem 3

Theorem

§2.1 Theorem 3

Theorem
Let A and B be matrices of the appropriate dimensions for the following expressions. Then

§2.1 Theorem 3

Theorem
Let A and B be matrices of the appropriate dimensions for the following expressions. Then
(a) $\left(A^{T}\right)^{T}=A$

§2.1 Theorem 3

Theorem

Let A and B be matrices of the appropriate dimensions for the following expressions. Then
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$

§2.1 Theorem 3

Theorem

Let A and B be matrices of the appropriate dimensions for the following expressions. Then
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) For $\lambda \in \mathbb{R},(\lambda A)^{T}=\lambda A^{T}$

§2.1 Theorem 3

Theorem

Let A and B be matrices of the appropriate dimensions for the following expressions. Then
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) For $\lambda \in \mathbb{R},(\lambda A)^{T}=\lambda A^{T}$
(d) $(A B)^{T}=B^{T} A^{T}$.

§2.1 Theorem 3

Theorem

Let A and B be matrices of the appropriate dimensions for the following expressions. Then
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) For $\lambda \in \mathbb{R},(\lambda A)^{T}=\lambda A^{T}$
(d) $(A B)^{T}=B^{T} A^{T}$.

You can check the first 3 as an exercise, but let's look at the last part together.

§2.1 Proof of Theorem 3 (d)

§2.1 Proof of Theorem 3 (d)

We start with an example.

§2.1 Proof of Theorem 3 (d)

We start with an example.

$$
\underbrace{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]}_{A_{2 \times 3}} \underbrace{\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34}
\end{array}\right]}_{B_{3 \times 4}}=\underbrace{\left[\begin{array}{c}
\operatorname{row}_{1}(A) B \\
\operatorname{row}_{2}(A) B
\end{array}\right]}_{(A B)_{2 \times 4}}
$$

§2.1 Proof of Theorem 3 (d)

We start with an example.

$$
\left.\begin{array}{l}
\underbrace{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]}_{A_{2 \times 3}} \underbrace{\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13}
\end{array} b_{14}\right.}_{B_{3 \times 4}} \begin{array}{lll}
b_{21} & b_{22} & b_{23} \\
b_{24} \\
b_{31} & b_{32} & b_{33}
\end{array} b_{34}
\end{array}\right]=\underbrace{\left[\begin{array}{l}
\operatorname{row}_{1}(A) B \\
\operatorname{row}_{2}(A) B
\end{array}\right]}_{(A B)_{2 \times 4}} .
$$

§2.1 Proof of Theorem 3 (d)

We start with an example.

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]}_{A_{2 \times 3}} \underbrace{\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{14} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{24} \\
b_{32} & b_{33} & b_{34}
\end{array}\right]}_{B_{3 \times 4}}=\underbrace{\left[\begin{array}{l}
\operatorname{row}_{1}(A) B \\
\operatorname{row}_{2}(A) B
\end{array}\right]}_{(A B)_{2 \times 4}} \\
& \underbrace{\left[\begin{array}{lll}
b_{11} & b_{21} & b_{31} \\
b_{12} & b_{22} & b_{32} \\
b_{13} & b_{23} & b_{33} \\
b_{14} & b_{24} & b_{34}
\end{array}\right]}_{\left(B^{T}\right)_{4 \times 3}} \underbrace{\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]}_{\left(A^{T}\right)_{3 \times 2}}=\underbrace{\left[B^{T} \operatorname{col}_{1}\left(A^{T}\right) B^{T} \operatorname{col}_{2}\left(A^{T}\right)\right]}_{\left(B^{T} A^{T}\right)_{4 \times 2}}
\end{aligned}
$$

Writing individual matrix entries more concisely we have:

$$
(A B)_{i j}=\sum_{k=1}^{3} a_{i k} b_{k j}, \quad \text { and } \quad\left(B^{T} A^{T}\right)_{i j}=\sum_{k=1}^{3} b_{i k} a_{j k}
$$

§2.1 Proof of Theorem 3 (d)

We start with an example.

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]}_{A_{2 \times 3}} \underbrace{\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34}
\end{array}\right]}_{B_{3 \times 4}}=\underbrace{\left[\begin{array}{l}
\operatorname{row}_{1}(A) B \\
\operatorname{row}_{2}(A) B
\end{array}\right]}_{(A B)_{2 \times 4}} \\
& \underbrace{\left[\begin{array}{lll}
b_{11} & b_{21} & b_{31} \\
b_{12} & b_{22} & b_{32} \\
b_{13} & b_{23} & b_{33} \\
b_{14} & b_{24} & b_{34}
\end{array}\right]}_{\left(B^{T}\right)_{4 \times 3}} \underbrace{\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]}_{\left(A^{T}\right)_{3 \times 2}}=\underbrace{\left[B^{T} \operatorname{col}_{1}\left(A^{T}\right) B^{T} \operatorname{col}_{2}\left(A^{T}\right)\right]}_{\left(B^{T} A^{T}\right)_{4 \times 2}}
\end{aligned}
$$

Writing individual matrix entries more concisely we have:

$$
(A B)_{i j}=\sum_{k=1}^{3} a_{i k} b_{k j}, \quad \text { and } \quad\left(B^{T} A^{T}\right)_{i j}=\sum_{k=1}^{3} b_{i k} a_{j k}
$$

How can we generalize this to finish the proof?

Matrix multiplication redux

Matrix multiplication redux

The previous proof illustrates the many ways to view matrix multiplication...

$$
A_{m \times n} B_{n \times p}=(A B)_{m \times p} .
$$

Matrix multiplication redux

The previous proof illustrates the many ways to view matrix multiplication...

$$
A_{m \times n} B_{n \times p}=(A B)_{m \times p} .
$$

$$
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Matrix multiplication redux

The previous proof illustrates the many ways to view matrix multiplication...

$$
A_{m \times n} B_{n \times p}=(A B)_{m \times p} .
$$

$$
\begin{gathered}
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \\
A B=\left[\begin{array}{c}
\operatorname{row}_{1}(A) \cdot B \\
\vdots \\
\operatorname{row}_{m}(A) \cdot B
\end{array}\right]
\end{gathered}
$$

Matrix multiplication redux

The previous proof illustrates the many ways to view matrix multiplication...

$$
A_{m \times n} B_{n \times p}=(A B)_{m \times p} .
$$

$$
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

$$
A B=\left[\begin{array}{c}
\operatorname{row}_{1}(A) \cdot B \\
\vdots \\
\operatorname{row}_{m}(A) \cdot B
\end{array}\right]
$$

$$
A B=\left[A \cdot \operatorname{col}_{1}(B) \cdots A \cdot \operatorname{col}_{p}(B)\right] .
$$

§2.2 Theorem 6 (c)

§2.2 Theorem 6 (c)

Theorem

§2.2 Theorem 6 (c)

Theorem
Let A be an invertible $n \times n$ matrix.

§2.2 Theorem 6 (c)

Theorem

Let A be an invertible $n \times n$ matrix. Then so is A^{T}.

§2.2 Theorem 6 (c)

Theorem
Let A be an invertible $n \times n$ matrix. Then so is A^{T}. Moreover, the inverse of A^{T} is the transpose of A^{-1}.

§2.2 Theorem 6 (c)

Theorem
Let A be an invertible $n \times n$ matrix. Then so is A^{T}. Moreover, the inverse of A^{T} is the transpose of A^{-1}. i.e.

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

§2.2 Theorem 6 (c)

Theorem
Let A be an invertible $n \times n$ matrix. Then so is A^{T}. Moreover, the inverse of A^{T} is the transpose of A^{-1}. i.e.

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Proof.

§2.2 Theorem 6 (c)

Theorem
Let A be an invertible $n \times n$ matrix. Then so is A^{T}. Moreover, the inverse of A^{T} is the transpose of A^{-1}. i.e.

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Proof.

Using the previous theorem from today we assert that the conditions for being an inverse are satisfied.

§2.2 Theorem 6 (c)

Theorem

Let A be an invertible $n \times n$ matrix. Then so is A^{T}. Moreover, the inverse of A^{T} is the transpose of A^{-1}. i.e.

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Proof.

Using the previous theorem from today we assert that the conditions for being an inverse are satisfied. Namely,

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=\left(I_{n}\right)^{T}=I_{n}
$$

§2.2 Theorem 6 (c)

Theorem

Let A be an invertible $n \times n$ matrix. Then so is A^{T}. Moreover, the inverse of A^{T} is the transpose of A^{-1}. i.e.

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Proof.

Using the previous theorem from today we assert that the conditions for being an inverse are satisfied. Namely,

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=\left(I_{n}\right)^{T}=I_{n}
$$

and

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=\left(I_{n}\right)^{T}=I_{n}
$$

§1.10 Linear difference equations

§1.10 Linear difference equations

Definition

§1.10 Linear difference equations

Definition

Consider a system that can be represented by a sequence of state vectors $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$.

§1.10 Linear difference equations

Definition

Consider a system that can be represented by a sequence of state vectors $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$. Suppose there is a matrix A with the property that

$$
\mathbf{x}_{k}=A \mathbf{x}_{k-1}, \quad \text { for } k=1,2,3, \ldots
$$

§1.10 Linear difference equations

Definition

Consider a system that can be represented by a sequence of state vectors $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$. Suppose there is a matrix A with the property that

$$
\mathbf{x}_{k}=A \mathbf{x}_{k-1}, \quad \text { for } k=1,2,3, \ldots
$$

Then we call the sequence $\left\{\mathbf{x}_{k}\right\}_{k=0}^{\infty}$ together with the transition matrix A a linear difference equation.
§1.10 Example

§1.10 Example

Consider the system of migration between a hypothetical city and suburban area.

§1.10 Example

Consider the system of migration between a hypothetical city and suburban area.

Suppose every year 95% of city residents stay in the city and 5\% migrate to the suburbs.

§1.10 Example

Consider the system of migration between a hypothetical city and suburban area.

Suppose every year 95% of city residents stay in the city and 5% migrate to the suburbs.

Similarly, suppose every year 97% of suburban residents stay in the suburbs and 3% migrate to the city.

§1.10 Example

Consider the system of migration between a hypothetical city and suburban area.

Suppose every year 95\% of city residents stay in the city and 5\% migrate to the suburbs.

Similarly, suppose every year 97% of suburban residents stay in the suburbs and 3% migrate to the city.
For $k=0,1,2, \ldots$, let $\mathbf{x}_{k}=\left[\begin{array}{c}r_{k} \\ s_{k}\end{array}\right]$ with r_{k}, s_{k} the city and suburban populations (respectively) k years after 2000.

§1.10 Example

Consider the system of migration between a hypothetical city and suburban area.

Suppose every year 95\% of city residents stay in the city and 5\% migrate to the suburbs.

Similarly, suppose every year 97% of suburban residents stay in the suburbs and 3% migrate to the city.
For $k=0,1,2, \ldots$, let $\mathbf{x}_{k}=\left[\begin{array}{c}r_{k} \\ s_{k}\end{array}\right]$ with r_{k}, s_{k} the city and
suburban populations (respectively) k years after 2000.
What is the transition matrix A that describes this system as a linear difference equation?
§1.10 Example

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs.

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

What are the populations after 1 year?

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

What are the populations after 1 year? 2 years?

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

What are the populations after 1 year? 2 years? 50 years?

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

What are the populations after 1 year? 2 years? 50 years? 100 years?

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

What are the populations after 1 year? 2 years? 50 years? 100 years? 1000 years?

§1.10 Example

The matrix that describes the linear difference equation from the previous slide is given by

$$
A=\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right]
$$

Suppose the initial population of the city is 600000 and 400000 for the suburbs. This corresponds to an initial state vector of

$$
x_{0}=\left[\begin{array}{l}
600000 \\
400000
\end{array}\right]
$$

What are the populations after 1 year? 2 years? 50 years? 100 years? 1000 years?
http://sagecell.sagemath.org/?q=hgoihs

