Lecture 09

Math 22 Summer 2017
July 10, 2017



Reminders/Announcements

» X-hour Tuesday (§2.3)
> “Quiz" Wednesday to practice for Midterm

» Midterm will cover material through §2.3



Just for today

» Practice problems about inverses
» More about matrices: §2.1/§2.2 powers and transpose

» §1.10 Linear difference equations
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§2.2 Classwork

12
. 1 _
» Find A forA—[34].

» Use A~! from the previous part to solve Ax = b for

o= 1]

> Find the sequence of elementary matrices that transform the
above A to b.
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§2.1 Powers of a matrix

Definition
Let A be an xn matrix and k € {0,1,2,...}.
We define the k-th power of A by

A= A A,
N——

k times

What is the k-th power of a diagonal matrix?
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§2.1 Transpose of a matrix

Definition

Let A be an m x n matrix. The transpose of A (denoted AT) is
the n x m matrix obtained from A by interchanging rows and
columns.

What's an example?
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§2.1 Theorem 3

Theorem

Let A and B be matrices of the appropriate dimensions for the
following expressions. Then

(2) (AT)T =A

(b) (A+B)T =AT + BT
(c) For A € R, (MNA)T = MAT
(d) (AB)T = BTAT.

You can check the first 3 as an exercise, but let's look at the last
part together.
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We start with an example.

bi1 bix b1z b
a1l d12 413 bz bz bz b;: = rowl(A)B
ar1 ax a3 bs1 bzp b3z bza rowz(4)B
Azx3 B3xa (AB)2xa

bi1 by b31 a1 a1
b1 by b3 a1 am | = [BTcoll(AT) BTcolz(AT)]
b1z bz b33 a13 a3 ~-
bis bog b3 (BTAT)ax2
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3769/
bi1 b1o b1z b
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3 3
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§2.1 Proof of Theorem 3 (d)

We start with an example.

3769
bi1 b1z b1z b
ai1 a az bil blz b13 b;4 _ | row(A)B
az1 a2 a3 ez 2T rowy(A)B
b31 b3y b3z b3
Azx3 B3xa (AB)2xa
bi1 b1 bsy a1 a1
b1 by b3 a1 am | = [BTcoll(AT) BTcolz(AT)]
b1z boz bss a13 a3
b14 b24 b34 -~ (BTAT)4><2
(BT)axs (A2

Writing individual matrix entries more concisely we have:

3 3
(AB),:,' = Z a,-kbkj, and (BTAT)U = Z b,-kajk.
k=1 k=1

How can we generalize this to finish the proof?
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Matrix multiplication redux

The previous proof illustrates the many ways
to view matrix multiplication... 280

Amannxp = (AB)mxp~

>
(AB),:,' = Z a,-kbkj.
k=1
>

rowy(A) - B
AB = :
rowm(A) - B



Matrix multiplication redux

The previous proof illustrates the many ways
to view matrix multiplication... 782

Amannxp = (AB)mxp~

>
(AB)U = Z a,-kbkj.
k=1
>
rowi(A) - B
AB = :
rowm(A) - B
>

AB = [A-coli(B) -+ A-coly(B)].
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Theorem Nz7697

Let A be an invertible n x n matrix. Then so is AT. Moreover, the
inverse of AT is the transpose of A1, i.e.

(AT) L= (AT,

Proof.

Using the previous theorem from today we assert that the
conditions for being an inverse are satisfied.
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Theorem Niz7697

Let A be an invertible n x n matrix. Then so is AT. Moreover, the
inverse of AT is the transpose of A1, i.e.

(AT) L= (AT,

Proof.

Using the previous theorem from today we assert that the
conditions for being an inverse are satisfied. Namely,

(ATAT = (AA YT = (1)T =1,

and
ATAHT = (AT =) =1,
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§1.10 Linear difference equations

Definition

Consider a system that can be represented by a sequence of state
vectors Xg, X1, X2, .. .. Suppose there is a matrix A with the
property that

X = Axg_1, fork=1,2,3....

Then we call the sequence {x,}?2, together with the transition
matrix A a linear difference equation.
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§1.10 Example

Consider the system of migration between a hypothetical city and
suburban area.

Suppose every year 95% of city residents stay in the city and 5%
migrate to the suburbs.

Similarly, suppose every year 97% of suburban residents stay in the
suburbs and 3% migrate to the city.
For k=0,1,2,..., let x, = L:k with rg, si the city and
K
suburban populations (respectively) k years after 2000.

What is the transition matrix A that describes this system as a
linear difference equation?
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