
Lecture 09
Math 22 Summer 2017

July 10, 2017



Reminders/Announcements

I X-hour Tuesday (§2.3)
I “Quiz” Wednesday to practice for Midterm
I Midterm will cover material through §2.3



Just for today

I Practice problems about inverses
I More about matrices: §2.1/§2.2 powers and transpose
I §1.10 Linear difference equations



§2.2 Classwork

I Find A−1 for A =
[

1 2
3 4

]
.

I Use A−1 from the previous part to solve Ax = b for

b =
[

1
−1

]
.

I Find the sequence of elementary matrices that transform the
above A to I2.
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§2.1 Powers of a matrix

Definition
Let A be an ×n matrix and k ∈ {0, 1, 2, . . . }.
We define the k-th power of A by

Ak := A · · ·A︸ ︷︷ ︸
k times

.

What is the k-th power of a diagonal matrix?
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Let A be an m × n matrix. The transpose of A (denoted AT ) is
the n ×m matrix obtained from A by interchanging rows and
columns.

What’s an example?
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§2.1 Theorem 3

Theorem
Let A and B be matrices of the appropriate dimensions for the
following expressions. Then

(a) (AT )T = A
(b) (A + B)T = AT + BT

(c) For λ ∈ R, (λA)T = λAT

(d) (AB)T = BT AT .

You can check the first 3 as an exercise, but let’s look at the last
part together.
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§2.1 Proof of Theorem 3 (d)

We start with an example.
[

a11 a12 a13
a21 a22 a23

]
︸ ︷︷ ︸

A2×3

 b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34


︸ ︷︷ ︸

B3×4

=
[

row1(A)B
row2(A)B

]
︸ ︷︷ ︸

(AB)2×4


b11 b21 b31
b12 b22 b32
b13 b23 b33
b14 b24 b34


︸ ︷︷ ︸

(BT )4×3

 a11 a21
a12 a22
a13 a23


︸ ︷︷ ︸

(AT )3×2

=
[

BT col1(AT ) BT col2(AT )
]

︸ ︷︷ ︸
(BT AT )4×2

Writing individual matrix entries more concisely we have:

(AB)ij =
3∑

k=1
aikbkj , and (BT AT )ij =

3∑
k=1

bikajk .

How can we generalize this to finish the proof?
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Matrix multiplication redux

The previous proof illustrates the many ways
to view matrix multiplication...

Am×nBn×p = (AB)m×p.

I

(AB)ij =
n∑

k=1
aikbkj .

I

AB =

 row1(A) · B
...

rowm(A) · B


I

AB =
[

A · col1(B) · · · A · colp(B)
]
.
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§2.2 Theorem 6 (c)

Theorem
Let A be an invertible n × n matrix. Then so is AT . Moreover, the
inverse of AT is the transpose of A−1. i.e.

(AT )−1 = (A−1)T .

Proof.
Using the previous theorem from today we assert that the
conditions for being an inverse are satisfied. Namely,

(A−1)T AT = (AA−1)T = (In)T = In

and
AT (A−1)T = (A−1A)T = (In)T = In.
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§1.10 Linear difference equations

Definition
Consider a system that can be represented by a sequence of state
vectors x0, x1, x2, . . . . Suppose there is a matrix A with the
property that

xk = Axk−1, for k = 1, 2, 3, . . . .

Then we call the sequence {xk}∞k=0 together with the transition
matrix A a linear difference equation.
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§1.10 Example

Consider the system of migration between a hypothetical city and
suburban area.

Suppose every year 95% of city residents stay in the city and 5%
migrate to the suburbs.

Similarly, suppose every year 97% of suburban residents stay in the
suburbs and 3% migrate to the city.

For k = 0, 1, 2, . . . , let xk =
[

rk
sk

]
with rk , sk the city and

suburban populations (respectively) k years after 2000.

What is the transition matrix A that describes this system as a
linear difference equation?
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§1.10 Example

The matrix that describes the linear difference equation from the
previous slide is given by

A =
[
.95 .03
.05 .97

]
.

Suppose the initial population of the city is 600000 and 400000 for
the suburbs. This corresponds to an initial state vector of

x0 =
[

600000
400000

]
.

What are the populations after 1 year? 2 years? 50 years? 100
years? 1000 years?

http://sagecell.sagemath.org/?q=hgoihs

http://sagecell.sagemath.org/?q=hgoihs
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