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Just for today

I Answers to classwork07 from last time: How can you check if
a map is linear?

I Recall matrix multiplication and associativity
I §2.2 elementary matrices and inverses
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Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example
of a binary operation on a set. (e.g. R with + or R× with ·). We
will be using the fact that matrix multiplication is associative.
Recall what that means for + and ·.

Today we will define the inverse of a matrix. To do this we need
an identity for the operation. What is the identity for +? What is
the identity for ·? What is the identity for matrix multiplication?
What are examples of inverses in the familiar context of + and ·?
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§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique?

Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes!

What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof?

We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1.

A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.

Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one?

How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses?

Well, for
2× 2, we can work explicitly...



§2.2 The inverse of a matrix

Definition
An n× n matrix A is invertible if there exists another n× n matrix
C with the property that AC = In = CA where In denotes the
n × n identity matrix.

Is C unique? Yes! What’s the proof? We say that C is the inverse
of A and denote it by A−1. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for
2× 2, we can work explicitly...



§2.2 Theorem 4

Theorem

Let A =
[

a b
c d

]
. Then A is invertible if and only if ad − bc 6= 0.

Moreover, if A is invertible, then explicitly A−1 is given by the
following:

A−1 = 1
ad − bc

[
d −b
−c a

]

The real number ad − bc is an example of a determinant in the
2× 2 case. Example?
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§2.2 Theorem 5

Theorem
Suppose A is an invertible n× n matrix. Then for each b ∈ Rn, the
matrix equation Ax = b has a unique solution x = A−1b.

Proof.
Show that A−1b is a solution.
Show that any solution must be equal to A−1b.
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Proof.
Check the definition.
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Performing a row operation to an m × n matrix A is equivalent to
left multiplication by an m ×m elementary matrix E created by
performing the desired row operation to Im.

Example?
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§2.2 Theorem 7

Theorem
An n × n matrix A is invertible if and only if A is row equivalent to
In. Moreover, the sequence of row operations that transforms A to
In also transforms In to A−1.

Proof.
If A is invertible, then why does A have a pivot in every row? A
square matrix with a pivot in every row is row equivalent to the
identity matrix. Conversely, assume A ∼ In. Then there exist
elementary matrices E1, . . . , Ek such that E1E2 · · ·EkA = In. Now
multiply on the left by (E1E2 · · ·Ek)−1. How do we finish?
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§2.2 Algorithm to compute A−1

Theorem 7 on the previous slide yields an algorithm to test
invertibility and to compute inverses.

Theorem
Let A be an n × n matrix. Consider the augmented matrix [A In].
If A is row equivalent to In, then [A In] is row equivalent to
[In A−1]. If the RREF of A is not In, then A is not invertible.

As an example, 2 3 1 1 0 0
−1 −1 0 0 1 0
−2 0 1 0 0 1

 ∼
 1 0 0 1 3 −1

0 1 0 −1 −4 1
0 0 1 2 6 −1

 .
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As an example, 2 3 1 1 0 0
−1 −1 0 0 1 0
−2 0 1 0 0 1

 ∼
 1 0 0 1 3 −1

0 1 0 −1 −4 1
0 0 1 2 6 −1

 .



§2.2 Classwork

I Find A−1 for A =
[

1 2
3 4

]
.

I Use A−1 from the previous part to solve Ax = b for

b =
[

1
−1

]
.

I Find the sequence of elementary matrices that transform the
above A to I2.
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