Lecture 08

Math 22 Summer 2017
July 07, 2017



Just for today

> Answers to classworkQ7 from last time: How can you check if
a map is linear?
» Recall matrix multiplication and associativity

> §2.2 elementary matrices and inverses



Answers to classworkQ7



https://math.dartmouth.edu/~m22x17/section2lectures/classwork07ans.pdf
https://math.dartmouth.edu/~m22x17/section2lectures/classwork07ans.pdf

Answers to classworkQ7

https://math.dartmouth.edu/~m22x17/section2lectures/
classworkO7ans.pdf


https://math.dartmouth.edu/~m22x17/section2lectures/classwork07ans.pdf
https://math.dartmouth.edu/~m22x17/section2lectures/classwork07ans.pdf
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Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example
of a binary operation on a set. (e.g. R with + or R* with -). We
will be using the fact that matrix multiplication is associative.
Recall what that means for + and -.

Today we will define the inverse of a matrix. To do this we need
an identity for the operation. What is the identity for +7 What is
the identity for -7 What is the identity for matrix multiplication?
What are examples of inverses in the familiar context of + and -7
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§2.2 The inverse of a matrix

Definition

An n x n matrix A is invertible if there exists another n x n matrix
C with the property that AC = I, = CA where [, denotes the
n X n identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse
of A and denote it by A71. A matrix need not have an inverse.
Can you think of one? How can we compute inverses? Well, for

2 x 2, we can work explicitly...



§2.2 Theorem 4




§2.2 Theorem 4

Theorem



§2.2 Theorem 4

Theorem

ab
Let A= [cd]'



§2.2 Theorem 4

Theorem

ab

Let A= [cd

] . Then A is invertible if and only if ad — bc # 0.



§2.2 Theorem 4

Theorem

ab

Let A= [c d] . Then A is invertible if and only if ad — bc # 0.

Moreover, if A is invertible, then explicitly A=* is given by the
following:



§2.2 Theorem 4

Theorem

Let A= [f_’: 3] . Then A is invertible if and only if ad — bc # 0.

Moreover, if A is invertible, then explicitly A~ is given by the

following:
1 d—b
ATl =
ad — bc [—c a]




§2.2 Theorem 4

Theorem

Let A= [j 3] . Then A is invertible if and only if ad — bc # 0.

Moreover, if A is invertible, then explicitly A~ is given by the
following:
1 d—b
ATl =
ad — bc [—c a]

The real number ad — bc is an example of a determinant in the
2 X 2 case.




§2.2 Theorem 4

Theorem

Let A= [j 3] . Then A is invertible if and only if ad — bc # 0.

Moreover, if A is invertible, then explicitly A~ is given by the
following:
1 d—b
ATl =
ad — bc [—c a]

The real number ad — bc is an example of a determinant in the
2 x 2 case. Example?
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§2.2 Theorem 5

Theorem

Suppose A is an invertible n X n matrix. Then for each b € R", the
matrix equation Ax = b has a unique solution x = A~1b.

Proof.

Show that A~1b is a solution.
Show that any solution must be equal to A~'b. O
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Theorem

(2) Suppose A is invertible. Then A=Y is invertible.

Proof.
What is the inverse of A=17? m
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§2.2 Theorem 6

Theorem

(2) Suppose A is invertible. Then A=Y is invertible.

Proof.

What is the inverse of A=1? O

(b) Suppose A and B are invertible. Then AB is invertible and
(AB)~! = B~1A-1.

Proof.
Check the definition. ]
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a single row operation to the identity matrix /,.
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Example?
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§2.2 Theorem 7

Theorem

An n X n matrix A is invertible if and only if A is row equivalent to
I,. Moreover, the sequence of row operations that transforms A to
I, also transforms I, to A~1.

Proof.

If Ais invertible, then why does A have a pivot in every row? A
square matrix with a pivot in every row is row equivalent to the
identity matrix. Conversely, assume A ~ [,. Then there exist
elementary matrices Ei, ..., Ex such that E1Ey--- ExA = 1,. Now
multiply on the left by (E1E>--- Ex)~!. How do we finish? O
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§2.2 Algorithm to compute A~1

Theorem 7 on the previous slide yields an algorithm to test
invertibility and to compute inverses.

Theorem

Let A be an n x n matrix. Consider the augmented matrix [A I,].
If A is row equivalent to I,, then [A I,] is row equivalent to
[I, A~1]. If the RREF of A is not I,, then A is not invertible.

As an example,

2 31100 100 1 3-1
-1-10010|~]|010-1-4 1
-2 01001 001 2 6-1
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. 1 _
» Find A forA—[34].

» Use A~! from the previous part to solve Ax = b for

o= 1]

> Find the sequence of elementary matrices that transform the
above A to b.



