Lecture 08

Math 22 Summer 2017
July 07, 2017

Just for today

- Answers to classwork07 from last time: How can you check if a map is linear?
- Recall matrix multiplication and associativity
- §2.2 elementary matrices and inverses

Answers to classwork07

Answers to classwork07

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork07ans.pdf

Review matrix multiplication and associativity

Review matrix multiplication and associativity

Recall matrix multiplication via dot products.

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot).

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative.

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Today we will define the inverse of a matrix.

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Today we will define the inverse of a matrix. To do this we need an identity for the operation.

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Today we will define the inverse of a matrix. To do this we need an identity for the operation. What is the identity for + ?

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Today we will define the inverse of a matrix. To do this we need an identity for the operation. What is the identity for + ? What is the identity for \cdot ?

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Today we will define the inverse of a matrix. To do this we need an identity for the operation. What is the identity for + ? What is the identity for \cdot ? What is the identity for matrix multiplication?

Review matrix multiplication and associativity

Recall matrix multiplication via dot products. This is an example of a binary operation on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times}with \cdot). We will be using the fact that matrix multiplication is associative. Recall what that means for + and \cdot.

Today we will define the inverse of a matrix. To do this we need an identity for the operation. What is the identity for + ? What is the identity for \cdot ? What is the identity for matrix multiplication? What are examples of inverses in the familiar context of + and \cdot ?

§2.2 The inverse of a matrix

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique?

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes!

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof?

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1}.

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1}. A matrix need not have an inverse.

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1}. A matrix need not have an inverse.
Can you think of one?

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1}. A matrix need not have an inverse.
Can you think of one? How can we compute inverses?

§2.2 The inverse of a matrix

Definition

An $n \times n$ matrix A is invertible if there exists another $n \times n$ matrix C with the property that $A C=I_{n}=C A$ where I_{n} denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1}. A matrix need not have an inverse. Can you think of one? How can we compute inverses? Well, for 2×2, we can work explicitly...

§2.2 Theorem 4

§2.2 Theorem 4

Theorem

§2.2 Theorem 4

Theorem
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

§2.2 Theorem 4

Theorem
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$.

§2.2 Theorem 4

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$. Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

§2.2 Theorem 4

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$. Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

§2.2 Theorem 4

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$.
Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

The real number $a d-b c$ is an example of a determinant in the 2×2 case.

§2.2 Theorem 4

Theorem

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A is invertible if and only if $a d-b c \neq 0$.
Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

The real number $a d-b c$ is an example of a determinant in the 2×2 case. Example?

§2.2 Theorem 5

§2.2 Theorem 5

Theorem

Suppose A is an invertible $n \times n$ matrix.

§2.2 Theorem 5

Theorem

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$,

§2.2 Theorem 5

Theorem

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

§2.2 Theorem 5

Theorem

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

§2.2 Theorem 5

Theorem

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

Show that $A^{-1} \mathbf{b}$ is a solution.

§2.2 Theorem 5

Theorem

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^{n}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof.

Show that $A^{-1} \mathbf{b}$ is a solution.
Show that any solution must be equal to $A^{-1} \mathbf{b}$.
§2.2 Theorem 6

§2.2 Theorem 6

Theorem

§2.2 Theorem 6

Theorem

(a) Suppose A is invertible. Then A^{-1} is invertible.

§2.2 Theorem 6

Theorem

(a) Suppose A is invertible. Then A^{-1} is invertible. Proof.

§2.2 Theorem 6

Theorem

(a) Suppose A is invertible. Then A^{-1} is invertible.

Proof.
What is the inverse of A^{-1} ?

§2.2 Theorem 6

Theorem

(a) Suppose A is invertible. Then A^{-1} is invertible.

Proof.
What is the inverse of A^{-1} ?
(b) Suppose A and B are invertible. Then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

§2.2 Theorem 6

Theorem

(a) Suppose A is invertible. Then A^{-1} is invertible.

Proof.
What is the inverse of A^{-1} ?
(b) Suppose A and B are invertible. Then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
Proof.

§2.2 Theorem 6

Theorem

(a) Suppose A is invertible. Then A^{-1} is invertible.

Proof.
What is the inverse of A^{-1} ?
(b) Suppose A and B are invertible. Then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Proof.
Check the definition.

§2.2 Elementary matrices

§2.2 Elementary matrices

Definition

An elementary matrix is a matrix that is obtained by performing a single row operation to the identity matrix I_{n}.

§2.2 Elementary matrices

§2.2 Elementary matrices

Theorem

Performing a row operation to an $m \times n$ matrix A is equivalent to left multiplication by an $m \times m$ elementary matrix E created by performing the desired row operation to I_{m}.

§2.2 Elementary matrices

Theorem

Performing a row operation to an $m \times n$ matrix A is equivalent to left multiplication by an $m \times m$ elementary matrix E created by performing the desired row operation to I_{m}.

Example?

§2.2 Elementary matrices

§2.2 Elementary matrices

Theorem
Every elementary matrix E is invertible, and E^{-1} is the elementary matrix that transforms E back to the identity.

§2.2 Elementary matrices

Theorem
Every elementary matrix E is invertible, and E^{-1} is the elementary matrix that transforms E back to the identity.

Example?

§2.2 Theorem 7

§2.2 Theorem 7

Theorem
An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}.

§2.2 Theorem 7

Theorem
An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

§2.2 Theorem 7

Theorem
An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

§2.2 Theorem 7

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

If A is invertible, then why does A have a pivot in every row?

§2.2 Theorem 7

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix.

§2.2 Theorem 7

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_{n}$.

§2.2 Theorem 7

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_{n}$. Then there exist elementary matrices E_{1}, \ldots, E_{k} such that $E_{1} E_{2} \cdots E_{k} A=I_{n}$.

§2.2 Theorem 7

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_{n}$. Then there exist elementary matrices E_{1}, \ldots, E_{k} such that $E_{1} E_{2} \cdots E_{k} A=I_{n}$. Now multiply on the left by $\left(E_{1} E_{2} \cdots E_{k}\right)^{-1}$.

§2.2 Theorem 7

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}. Moreover, the sequence of row operations that transforms A to I_{n} also transforms I_{n} to A^{-1}.

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_{n}$. Then there exist elementary matrices E_{1}, \ldots, E_{k} such that $E_{1} E_{2} \cdots E_{k} A=I_{n}$. Now multiply on the left by $\left(E_{1} E_{2} \cdots E_{k}\right)^{-1}$. How do we finish?

§2.2 Algorithm to compute A^{-1}

§2.2 Algorithm to compute A^{-1}

Theorem 7 on the previous slide yields an algorithm to test invertibility and to compute inverses.

Theorem

§2.2 Algorithm to compute A^{-1}

Theorem 7 on the previous slide yields an algorithm to test invertibility and to compute inverses.

Theorem

Let A be an $n \times n$ matrix.

§2.2 Algorithm to compute A^{-1}

Theorem 7 on the previous slide yields an algorithm to test invertibility and to compute inverses.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $\left[A I_{n}\right]$.

§2.2 Algorithm to compute A^{-1}

Theorem 7 on the previous slide yields an algorithm to test invertibility and to compute inverses.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $\left[A I_{n}\right]$. If A is row equivalent to I_{n}, then $\left[A I_{n}\right]$ is row equivalent to [$I_{n} A^{-1}$].

§2.2 Algorithm to compute A^{-1}

Theorem 7 on the previous slide yields an algorithm to test invertibility and to compute inverses.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $\left[A I_{n}\right]$. If A is row equivalent to I_{n}, then $\left[A I_{n}\right]$ is row equivalent to [$\left.I_{n} A^{-1}\right]$. If the RREF of A is not I_{n}, then A is not invertible.

§2.2 Algorithm to compute A^{-1}

Theorem 7 on the previous slide yields an algorithm to test invertibility and to compute inverses.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $\left[A I_{n}\right]$. If A is row equivalent to I_{n}, then $\left[A I_{n}\right]$ is row equivalent to [$I_{n} A^{-1}$]. If the RREF of A is not I_{n}, then A is not invertible.

As an example,

$$
\left[\begin{array}{rrrrrr}
2 & 3 & 1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & 3 & -1 \\
0 & 1 & 0 & -1 & -4 & 1 \\
0 & 0 & 1 & 2 & 6 & -1
\end{array}\right] .
$$

§2.2 Classwork

§2.2 Classwork

\Rightarrow Find A^{-1} for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

§2.2 Classwork

- Find A^{-1} for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
- Use A^{-1} from the previous part to solve $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.

§2.2 Classwork

- Find A^{-1} for $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
- Use A^{-1} from the previous part to solve $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
- Find the sequence of elementary matrices that transform the above A to I_{2}.

