

Lecture 08

Math 22 Summer 2017 July 07, 2017

- Answers to classwork07 from last time: How can you check if a map is linear?
- Recall matrix multiplication and associativity
- §2.2 elementary matrices and inverses

Answers to classwork07

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork07ans.pdf

Review matrix multiplication and associativity

Recall matrix multiplication via dot products.

Recall matrix multiplication via dot products. This is an example of a *binary operation* on a set. (e.g. \mathbb{R} with + or \mathbb{R}^{\times} with \cdot).

Today we will define the inverse of a matrix.

Today we will define the inverse of a matrix. To do this we need an *identity* for the operation.

Today we will define the inverse of a matrix. To do this we need an *identity* for the operation. What is the identity for +?

Today we will define the inverse of a matrix. To do this we need an *identity* for the operation. What is the identity for +? What is the identity for \cdot ?

Today we will define the inverse of a matrix. To do this we need an *identity* for the operation. What is the identity for +? What is the identity for \cdot ? What is the identity for matrix multiplication?

Today we will define the inverse of a matrix. To do this we need an *identity* for the operation. What is the identity for +? What is the identity for \cdot ? What is the identity for matrix multiplication? What are examples of inverses in the familiar context of + and \cdot ?

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique?

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes!

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof?

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1} .

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is *the inverse* of A and denote it by A^{-1} . A matrix need not have an inverse.

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1} . A matrix need not have an inverse. Can you think of one?

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1} . A matrix need not have an inverse. Can you think of one? How can we compute inverses?

An $n \times n$ matrix A is **invertible** if there exists another $n \times n$ matrix C with the property that $AC = I_n = CA$ where I_n denotes the $n \times n$ identity matrix.

Is C unique? Yes! What's the proof? We say that C is the inverse of A and denote it by A^{-1} . A matrix need not have an inverse. Can you think of one? How can we compute inverses? Well, for 2×2 , we can work explicitly...

§2.2 Theorem 4

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then A is invertible if and only if $ad - bc \neq 0$.

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if $ad - bc \neq 0$. Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if $ad - bc \neq 0$. Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if $ad - bc \neq 0$. Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The real number ad - bc is an example of a **determinant** in the 2×2 case.

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if $ad - bc \neq 0$. Moreover, if A is invertible, then explicitly A^{-1} is given by the following:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The real number ad - bc is an example of a **determinant** in the 2×2 case. Example?

§2.2 Theorem 5

Suppose A is an invertible $n \times n$ matrix.

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^n$,

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^n$, the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^n$, the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof.

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^n$, the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof.

Show that $A^{-1}\mathbf{b}$ is a solution.

Suppose A is an invertible $n \times n$ matrix. Then for each $\mathbf{b} \in \mathbb{R}^n$, the matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof.

Show that $A^{-1}\mathbf{b}$ is a solution. Show that any solution must be equal to $A^{-1}\mathbf{b}$.

§2.2 Theorem 6

(a) Suppose A is invertible. Then A^{-1} is invertible.

(a) Suppose A is invertible. Then A^{-1} is invertible. Proof.

(a) Suppose A is invertible. Then A^{-1} is invertible. Proof. What is the inverse of A^{-1} ?

(a) Suppose A is invertible. Then A⁻¹ is invertible.
Proof.
What is the inverse of A⁻¹?
(b) Suppose A and B are invertible. Then AB is invertible and (AB)⁻¹ = B⁻¹A⁻¹.

(a) Suppose A is invertible. Then A⁻¹ is invertible.
Proof.
What is the inverse of A⁻¹?
(b) Suppose A and B are invertible. Then AB is invertible and (AB)⁻¹ = B⁻¹A⁻¹.

Proof.

(a) Suppose A is invertible. Then A⁻¹ is invertible.
Proof.
What is the inverse of A⁻¹?
(b) Suppose A and B are invertible. Then AB is invertible and (AB)⁻¹ = B⁻¹A⁻¹.

Proof.

Check the definition.

§2.2 Elementary matrices

Definition

An **elementary matrix** is a matrix that is obtained by performing a single row operation to the identity matrix I_n .

§2.2 Elementary matrices

Performing a row operation to an $m \times n$ matrix A is equivalent to left multiplication by an $m \times m$ elementary matrix E created by performing the desired row operation to I_m .

Performing a row operation to an $m \times n$ matrix A is equivalent to left multiplication by an $m \times m$ elementary matrix E created by performing the desired row operation to I_m .

Example?

§2.2 Elementary matrices

Every elementary matrix E is invertible, and E^{-1} is the elementary matrix that transforms E back to the identity.

Every elementary matrix E is invertible, and E^{-1} is the elementary matrix that transforms E back to the identity.

Example?

§2.2 Theorem 7

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n .

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

If A is invertible, then why does A have a pivot in every row?

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix.

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_n$.

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_n$. Then there exist elementary matrices E_1, \ldots, E_k such that $E_1E_2 \cdots E_kA = I_n$.

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_n$. Then there exist elementary matrices E_1, \ldots, E_k such that $E_1E_2 \cdots E_kA = I_n$. Now multiply on the left by $(E_1E_2 \cdots E_k)^{-1}$.

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . Moreover, the sequence of row operations that transforms A to I_n also transforms I_n to A^{-1} .

Proof.

If A is invertible, then why does A have a pivot in every row? A square matrix with a pivot in every row is row equivalent to the identity matrix. Conversely, assume $A \sim I_n$. Then there exist elementary matrices E_1, \ldots, E_k such that $E_1E_2 \cdots E_kA = I_n$. Now multiply on the left by $(E_1E_2 \cdots E_k)^{-1}$. How do we finish?

§2.2 Algorithm to compute A^{-1}

Theorem

Theorem

Let A be an $n \times n$ matrix.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $[A I_n]$.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $[A I_n]$. If A is row equivalent to I_n , then $[A I_n]$ is row equivalent to $[I_n A^{-1}]$.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $[A I_n]$. If A is row equivalent to I_n , then $[A I_n]$ is row equivalent to $[I_n A^{-1}]$. If the RREF of A is not I_n , then A is not invertible.

Theorem

Let A be an $n \times n$ matrix. Consider the augmented matrix $[A I_n]$. If A is row equivalent to I_n , then $[A I_n]$ is row equivalent to $[I_n A^{-1}]$. If the RREF of A is not I_n , then A is not invertible.

As an example,

$$\begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 3 & -1 \\ 0 & 1 & 0 & -1 & -4 & 1 \\ 0 & 0 & 1 & 2 & 6 & -1 \end{bmatrix}$$

§2.2 Classwork

Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Find the sequence of elementary matrices that transform the above A to I_2 .