

# Lecture 07

Math 22 Summer 2017 July 05, 2017



- Answers to classwork06 from last time
- §1.9 more about linear maps

# Answers to classwork06







OK, enough smiley faces for one day.



OK, enough smiley faces for one day.

Can you make any observations about how the matrix A relates to where the vectors  $\mathbf{e}_1$  and  $\mathbf{e}_2$  are mapped by T?



OK, enough smiley faces for one day.

Can you make any observations about how the matrix A relates to where the vectors  $\mathbf{e}_1$  and  $\mathbf{e}_2$  are mapped by T?

We summarize this in the following theorem.

# §1.9 Theorem 10





Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map.



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. Then there exists a unique  $m \times n$  matrix A such that

 $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. Then there exists a unique  $m \times n$  matrix A such that

 $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .

Moreover, we have that

$$A = [T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)].$$



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. Then there exists a unique  $m \times n$  matrix A such that

 $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .

Moreover, we have that

$$A = [T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)].$$

The matrix A is called the standard matrix for T.



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. Then there exists a unique  $m \times n$  matrix A such that

 $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .

Moreover, we have that

$$A = [T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)].$$

The matrix A is called the **standard matrix for** T. Sometimes we write [T] to indicate the standard matrix for T.







First write  $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$ .



First write  $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$ . Then apply linearity:



First write  $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$ . Then apply linearity:

$$T(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) = x_1T(\mathbf{e}_1) + \dots + x_nT(\mathbf{e}_n)$$
$$= \begin{bmatrix} T(\mathbf{e}_1) \cdots T(\mathbf{e}_n) \end{bmatrix} \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$
$$= A\mathbf{x}.$$



First write  $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$ . Then apply linearity:

$$T(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) = x_1T(\mathbf{e}_1) + \dots + x_nT(\mathbf{e}_n)$$
$$= \begin{bmatrix} T(\mathbf{e}_1) \cdots T(\mathbf{e}_n) \end{bmatrix} \begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}$$
$$= A\mathbf{x}.$$

What about "uniqueness"?



## Let $\lambda \in \mathbb{R}$ .



Let  $\lambda \in \mathbb{R}$ . Find the standard matrix for the map  $T : \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(\mathbf{x}) = \lambda \mathbf{x}$ .



1769

Let  $\lambda \in \mathbb{R}$ . Find the standard matrix for the map  $T : \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(\mathbf{x}) = \lambda \mathbf{x}$ .

Solution:

$$[T] = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

1769

Let  $\lambda \in \mathbb{R}$ . Find the standard matrix for the map  $T : \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(\mathbf{x}) = \lambda \mathbf{x}$ .

Solution:

$$[T] = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

Let  $\theta \in \mathbb{R}$ .

Let  $\lambda \in \mathbb{R}$ . Find the standard matrix for the map  $T : \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(\mathbf{x}) = \lambda \mathbf{x}$ .

#### Solution:

$$[\mathcal{T}] = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

Let  $\theta \in \mathbb{R}$ .

Find the standard matrix for the map  $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$  which rotates  $\mathbb{R}^2$  about the origin  $\theta$  radians anti-clockwise.



Let  $\lambda \in \mathbb{R}$ . Find the standard matrix for the map  $T : \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T(\mathbf{x}) = \lambda \mathbf{x}$ .

## Solution:

$$[\mathcal{T}] = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

Let  $\theta \in \mathbb{R}$ .

Find the standard matrix for the map  $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$  which rotates  $\mathbb{R}^2$  about the origin  $\theta$  radians anti-clockwise.

Solution:

$$[R_{\theta}] = \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$







Let  $T : \mathbb{R}^n \to \mathbb{R}^m$ .



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$ .

We say T is **onto** (or **surjective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at least one*  $\mathbf{x} \in \mathbb{R}^n$ .



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$ .

We say T is **onto** (or **surjective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at least one*  $\mathbf{x} \in \mathbb{R}^n$ .

We say T is **one-to-one** (or **injective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at most one*  $\mathbf{x} \in \mathbb{R}^n$ .



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$ .

We say T is **onto** (or **surjective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at least one*  $\mathbf{x} \in \mathbb{R}^n$ .

We say T is **one-to-one** (or **injective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at most one*  $\mathbf{x} \in \mathbb{R}^n$ .

If T is both injective and surjective we say that T is a **bijection**.



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$ .

We say T is **onto** (or **surjective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at least one*  $\mathbf{x} \in \mathbb{R}^n$ .

We say T is **one-to-one** (or **injective**) if every  $\mathbf{b} \in \mathbb{R}^m$  is the image of *at most one*  $\mathbf{x} \in \mathbb{R}^n$ .

If T is both injective and surjective we say that T is a **bijection**.

How can we algorithmically determine if linear maps have these properties?





Let T have standard matrix

$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$



Let T have standard matrix

$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?



Let T have standard matrix

$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ .


$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes!



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes! No matter what  $\mathbf{b} \in \mathbb{R}^3$  we choose, the augmented matrix  $[A|\mathbf{b}]$  corresponds to a consistent system.



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes! No matter what  $\mathbf{b} \in \mathbb{R}^3$  we choose, the augmented matrix  $[A|\mathbf{b}]$  corresponds to a consistent system. Is T one-to-one?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes! No matter what  $\mathbf{b} \in \mathbb{R}^3$  we choose, the augmented matrix  $[A|\mathbf{b}]$  corresponds to a consistent system. Is T one-to-one? No!



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes! No matter what  $\mathbf{b} \in \mathbb{R}^3$  we choose, the augmented matrix  $[A|\mathbf{b}]$  corresponds to a consistent system. Is T one-to-one? No! Let  $\mathbf{b} \in \mathbb{R}^3$ .



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes! No matter what  $\mathbf{b} \in \mathbb{R}^3$  we choose, the augmented matrix  $[A|\mathbf{b}]$  corresponds to a consistent system. Is T one-to-one? No! Let  $\mathbf{b} \in \mathbb{R}^3$ . How many solutions does the linear system  $[A|\mathbf{b}]$  have?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 0 & 17 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^3$ . Is T onto? Yes! No matter what  $\mathbf{b} \in \mathbb{R}^3$  we choose, the augmented matrix  $[A|\mathbf{b}]$  corresponds to a consistent system. Is T one-to-one? No! Let  $\mathbf{b} \in \mathbb{R}^3$ . How many solutions does the linear system  $[A|\mathbf{b}]$  have? Infinitely many since  $x_3$  is free.

# §1.9 Example



# §1.9 Example



Let T have standard matrix

$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ .



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ . Is T onto?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ . Is T onto? No!



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ . Is T onto? No! Can you find a  $\mathbf{b} \in \mathbb{R}^5$  so that the system  $[A|\mathbf{b}]$  is inconsistent?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ . Is T onto? No! Can you find a  $\mathbf{b} \in \mathbb{R}^5$  so that the system  $[A|\mathbf{b}]$  is inconsistent?

Is T one-to-one?



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ . Is T onto? No! Can you find a  $\mathbf{b} \in \mathbb{R}^5$  so that the system  $[A|\mathbf{b}]$  is inconsistent?

Is T one-to-one? Yes!



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ . Is T onto? No! Can you find a  $\mathbf{b} \in \mathbb{R}^5$  so that the system  $[A|\mathbf{b}]$  is inconsistent?

Is T one-to-one? Yes! Since there are no free variables, the system  $[A|\mathbf{b}]$  never has more that one solution.



$$A = \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -7 & 11 & -13 \\ 0 & 0 & 19 & 17 \\ 0 & 0 & 0 & 23 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

What is the domain/codomain of T?  $T : \mathbb{R}^4 \to \mathbb{R}^5$ .

Is T onto? No! Can you find a  $\mathbf{b} \in \mathbb{R}^5$  so that the system  $[A|\mathbf{b}]$  is inconsistent?

Is T one-to-one? Yes! Since there are no free variables, the system  $[A|\mathbf{b}]$  never has more that one solution.

Can you see an easy way to define a linear transformation T that is a *bijection*?



### Theorem

Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map.

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ .

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof?

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ):

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ .

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ):

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ .

( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let

 $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of  $\mathcal{T}$ .

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let  $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of T. To show T is one-to-one, what must we show?

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let  $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That  $\mathbf{b}$  has a unique preimage.

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let  $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That  $\mathbf{b}$  has a unique preimage. OK, so let  $\mathbf{u}, \mathbf{v}$  be arbitrary elements in the preimage of  $\mathbf{b}$ .

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let  $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That  $\mathbf{b}$  has a unique preimage. OK, so let  $\mathbf{u}, \mathbf{v}$  be arbitrary elements in the preimage of  $\mathbf{b}$ . It suffices to show  $\mathbf{u} = \mathbf{v}$ .

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let  $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That  $\mathbf{b}$  has a unique preimage. OK, so let  $\mathbf{u}, \mathbf{v}$  be arbitrary elements in the preimage of  $\mathbf{b}$ . It suffices to show  $\mathbf{u} = \mathbf{v}$ . But

$$\mathbf{0} = \mathbf{b} - \mathbf{b} = T(\mathbf{u}) - T(\mathbf{v}) = T(\mathbf{u} - \mathbf{v}).$$

### Theorem



Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. T is one-to-one if and only if  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

#### Proof.

First note that  $T(\mathbf{0}) = \mathbf{0}$ . What's the proof? ( $\Rightarrow$ ): Every element in the image has a unique preimage. In particular, so does  $\mathbf{0}$ . ( $\Leftarrow$ ): Assume  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution. Now let  $\mathbf{b} \in \mathbb{R}^m$  be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That  $\mathbf{b}$  has a unique preimage. OK, so let  $\mathbf{u}, \mathbf{v}$  be arbitrary elements in the preimage of  $\mathbf{b}$ . It suffices to show  $\mathbf{u} = \mathbf{v}$ . But

$$\mathbf{0} = \mathbf{b} - \mathbf{b} = T(\mathbf{u}) - T(\mathbf{v}) = T(\mathbf{u} - \mathbf{v}).$$

Can you see why we are done?




## Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A.



## Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A. Then:



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ .



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ . Proof.



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ . Proof.
- The image of T is the span of the columns.



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ .

# Proof.

The image of T is the span of the columns.

(b) *T* is one-to-one if and only if the columns of *A* are linearly independent.



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ .

# Proof.

The image of T is the span of the columns.

(b) *T* is one-to-one if and only if the columns of *A* are linearly independent.

Proof.



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ .

## Proof.

The image of T is the span of the columns.

(b) *T* is one-to-one if and only if the columns of *A* are linearly independent.

# Proof.

We saw that the columns are linearly independent if and only if  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution.



- Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  be a linear map with standard matrix A. Then:
- (a) T is onto if and only if the columns of A span  $\mathbb{R}^m$ .

## Proof.

The image of T is the span of the columns.

(b) *T* is one-to-one if and only if the columns of *A* are linearly independent.

# Proof.

We saw that the columns are linearly independent if and only if  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution. Now apply previous theorem.





# https://math.dartmouth.edu/~m22x17/section2lectures/ classwork07.pdf