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Just for today

I Answers to classwork06 from last time
I §1.9 more about linear maps



Answers to classwork06

https://math.dartmouth.edu/˜m22x17/section2lectures/
classwork06ans.pdf

OK, enough smiley faces for one day.

Can you make any observations about how the matrix A relates to
where the vectors e1 and e2 are mapped by T ?

We summarize this in the following theorem.
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§1.9 Theorem 10

Theorem
Let T : Rn → Rm be a linear map.
Then there exists a unique m × n matrix A such that

T (x) = Ax for all x in Rn.

Moreover, we have that

A = [T (e1) · · · T (en)].

The matrix A is called the standard matrix for T.
Sometimes we write [T ] to indicate the standard matrix for T .
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§1.9 Proof of Theorem 10

Proof.
First write x = x1e1 + · · ·+ xnen. Then apply linearity:

T (x1e1 + · · ·+ xnen) = x1T (e1) + · · ·+ xnT (en)

=
[

T (e1) · · · T (en)
]  x1

...
xn


= Ax.

What about “uniqueness”?
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§1.9 Examples

Let λ ∈ R.
Find the standard matrix for the map T : R2 → R2 defined by
T (x) = λx.

Solution:

[T ] =
[
λ 0
0 λ

]

Let θ ∈ R.
Find the standard matrix for the map Rθ : R2 → R2 which rotates
R2 about the origin θ radians anti-clockwise.

Solution:

[Rθ] =
[

cos θ − sin θ
sin θ cos θ

]
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§1.9 injectivity and surjectivity

Definition
Let T : Rn → Rm.

We say T is onto (or surjective) if every b ∈ Rm is the image of
at least one x ∈ Rn.

We say T is one-to-one (or injective) if every b ∈ Rm is the
image of at most one x ∈ Rn.

If T is both injective and surjective we say that T is a bijection.

How can we algorithmically determine if linear maps have these
properties?
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§1.9 Example

Let T have standard matrix

A =

 1 2 −3 5
0 −7 11 −13
0 0 0 17

 .
What is the domain/codomain of T ? T : R4 → R3.
Is T onto? Yes! No matter what b ∈ R3 we choose, the
augmented matrix [A|b] corresponds to a consistent system.
Is T one-to-one? No! Let b ∈ R3. How many solutions does the
linear system [A|b] have? Infinitely many since x3 is free.
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Is T onto? No! Can you find a b ∈ R5 so that the system [A|b] is
inconsistent?
Is T one-to-one? Yes! Since there are no free variables, the system
[A|b] never has more that one solution.
Can you see an easy way to define a linear transformation T that
is a bijection?
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Let T : Rn → Rm be a linear map. T is one-to-one if and only if
T (x) = 0 has only the trivial solution.

Proof.
First note that T (0) = 0. What’s the proof?
(⇒): Every element in the image has a unique preimage. In
particular, so does 0.
(⇐): Assume T (x) = 0 has only the trivial solution. Now let
b ∈ Rm be an arbitrary element in the image of T . To show T is
one-to-one, what must we show? That b has a unique preimage.
OK, so let u, v be arbitrary elements in the preimage of b. It
suffices to show u = v. But

0 = b− b = T (u)− T (v) = T (u− v).

Can you see why we are done?



§1.9 Theorem 11
Theorem
Let T : Rn → Rm be a linear map.

T is one-to-one if and only if
T (x) = 0 has only the trivial solution.

Proof.
First note that T (0) = 0. What’s the proof?
(⇒): Every element in the image has a unique preimage. In
particular, so does 0.
(⇐): Assume T (x) = 0 has only the trivial solution. Now let
b ∈ Rm be an arbitrary element in the image of T . To show T is
one-to-one, what must we show? That b has a unique preimage.
OK, so let u, v be arbitrary elements in the preimage of b. It
suffices to show u = v. But

0 = b− b = T (u)− T (v) = T (u− v).

Can you see why we are done?



§1.9 Theorem 11
Theorem
Let T : Rn → Rm be a linear map. T is one-to-one if and only if
T (x) = 0 has only the trivial solution.

Proof.
First note that T (0) = 0. What’s the proof?
(⇒): Every element in the image has a unique preimage. In
particular, so does 0.
(⇐): Assume T (x) = 0 has only the trivial solution. Now let
b ∈ Rm be an arbitrary element in the image of T . To show T is
one-to-one, what must we show? That b has a unique preimage.
OK, so let u, v be arbitrary elements in the preimage of b. It
suffices to show u = v. But

0 = b− b = T (u)− T (v) = T (u− v).

Can you see why we are done?



§1.9 Theorem 11
Theorem
Let T : Rn → Rm be a linear map. T is one-to-one if and only if
T (x) = 0 has only the trivial solution.

Proof.
First note that T (0) = 0.

What’s the proof?
(⇒): Every element in the image has a unique preimage. In
particular, so does 0.
(⇐): Assume T (x) = 0 has only the trivial solution. Now let
b ∈ Rm be an arbitrary element in the image of T . To show T is
one-to-one, what must we show? That b has a unique preimage.
OK, so let u, v be arbitrary elements in the preimage of b. It
suffices to show u = v. But

0 = b− b = T (u)− T (v) = T (u− v).

Can you see why we are done?



§1.9 Theorem 11
Theorem
Let T : Rn → Rm be a linear map. T is one-to-one if and only if
T (x) = 0 has only the trivial solution.

Proof.
First note that T (0) = 0. What’s the proof?

(⇒): Every element in the image has a unique preimage. In
particular, so does 0.
(⇐): Assume T (x) = 0 has only the trivial solution. Now let
b ∈ Rm be an arbitrary element in the image of T . To show T is
one-to-one, what must we show? That b has a unique preimage.
OK, so let u, v be arbitrary elements in the preimage of b. It
suffices to show u = v. But

0 = b− b = T (u)− T (v) = T (u− v).

Can you see why we are done?
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Theorem
Let T : Rn → Rm be a linear map with standard matrix A. Then:

(a) T is onto if and only if the columns of A span Rm.

Proof.
The image of T is the span of the columns.
(b) T is one-to-one if and only if the columns of A are linearly

independent.

Proof.
We saw that the columns are linearly independent if and only if
Ax = 0 has only the trivial solution. Now apply previous
theorem.
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