Lecture 07

Math 22 Summer 2017
July 05, 2017

Just for today

- Answers to classwork06 from last time
- §1.9 more about linear maps

Answers to classwork06

Answers to classwork06

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork06ans.pdf

Answers to classwork06

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork06ans.pdf

OK, enough smiley faces for one day.

Answers to classwork06

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork06ans.pdf

OK, enough smiley faces for one day.
Can you make any observations about how the matrix A relates to where the vectors \mathbf{e}_{1} and \mathbf{e}_{2} are mapped by T ?

Answers to classwork06

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork06ans.pdf

OK, enough smiley faces for one day.
Can you make any observations about how the matrix A relates to where the vectors \mathbf{e}_{1} and \mathbf{e}_{2} are mapped by T ?

We summarize this in the following theorem.

§1.9 Theorem 10

§1.9 Theorem 10

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.

§1.9 Theorem 10

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
Then there exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} .
$$

§1.9 Theorem 10

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
Then there exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} .
$$

Moreover, we have that

$$
A=\left[T\left(\mathbf{e}_{1}\right) \cdots T\left(\mathbf{e}_{n}\right)\right] .
$$

§1.9 Theorem 10

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
Then there exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} .
$$

Moreover, we have that

$$
A=\left[T\left(\mathbf{e}_{1}\right) \cdots T\left(\mathbf{e}_{n}\right)\right] .
$$

The matrix A is called the standard matrix for T.

§1.9 Theorem 10

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
Then there exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} .
$$

Moreover, we have that

$$
A=\left[T\left(\mathbf{e}_{1}\right) \cdots T\left(\mathbf{e}_{n}\right)\right] .
$$

The matrix A is called the standard matrix for T.
Sometimes we write $[T]$ to indicate the standard matrix for T.

§1.9 Proof of Theorem 10

§1.9 Proof of Theorem 10

Proof.

§1.9 Proof of Theorem 10

Proof.

First write $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$.

§1.9 Proof of Theorem 10

Proof.

First write $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$. Then apply linearity:

§1.9 Proof of Theorem 10

Proof.

First write $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$. Then apply linearity:

$$
\begin{aligned}
T\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right) & =x_{1} T\left(\mathbf{e}_{1}\right)+\cdots+x_{n} T\left(\mathbf{e}_{n}\right) \\
& =\left[\begin{array}{ccc}
T\left(\mathbf{e}_{1}\right) \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =A \mathbf{x}
\end{aligned}
$$

§1.9 Proof of Theorem 10

Proof.

First write $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$. Then apply linearity:

$$
\begin{aligned}
T\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right) & =x_{1} T\left(\mathbf{e}_{1}\right)+\cdots+x_{n} T\left(\mathbf{e}_{n}\right) \\
& =\left[T\left(\mathbf{e}_{1}\right) \cdots \quad T\left(\mathbf{e}_{n}\right)\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =A \mathbf{x} .
\end{aligned}
$$

What about "uniqueness"?

§1.9 Examples

§1.9 Examples

Let $\lambda \in \mathbb{R}$.

§1.9 Examples

Let $\lambda \in \mathbb{R}$.
Find the standard matrix for the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=\lambda \mathbf{x}$.

§1.9 Examples

Let $\lambda \in \mathbb{R}$.
Find the standard matrix for the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$T(\mathbf{x})=\lambda \mathbf{x}$.
Solution:

$$
[T]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

§1.9 Examples

Let $\lambda \in \mathbb{R}$.
Find the standard matrix for the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=\lambda \mathbf{x}$.

Solution:

$$
[T]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

Let $\theta \in \mathbb{R}$.

§1.9 Examples

Let $\lambda \in \mathbb{R}$.
Find the standard matrix for the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=\lambda \mathbf{x}$.

Solution:

$$
[T]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

Let $\theta \in \mathbb{R}$.
Find the standard matrix for the map $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which rotates \mathbb{R}^{2} about the origin θ radians anti-clockwise.

§1.9 Examples

Let $\lambda \in \mathbb{R}$.
Find the standard matrix for the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=\lambda \mathbf{x}$.

Solution:

$$
[T]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

Let $\theta \in \mathbb{R}$.
Find the standard matrix for the map $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which rotates \mathbb{R}^{2} about the origin θ radians anti-clockwise.

Solution:

$$
\left[R_{\theta}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

§1.9 injectivity and surjectivity

§1.9 injectivity and surjectivity

Definition
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

§1.9 injectivity and surjectivity

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
We say T is onto (or surjective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at least one $\mathbf{x} \in \mathbb{R}^{n}$.

§1.9 injectivity and surjectivity

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
We say T is onto (or surjective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at least one $\mathbf{x} \in \mathbb{R}^{n}$.

We say T is one-to-one (or injective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at most one $\mathbf{x} \in \mathbb{R}^{n}$.

§1.9 injectivity and surjectivity

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
We say T is onto (or surjective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at least one $\mathbf{x} \in \mathbb{R}^{n}$.

We say T is one-to-one (or injective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at most one $\mathbf{x} \in \mathbb{R}^{n}$.

If T is both injective and surjective we say that T is a bijection.

§1.9 injectivity and surjectivity

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
We say T is onto (or surjective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at least one $\mathbf{x} \in \mathbb{R}^{n}$.

We say T is one-to-one (or injective) if every $\mathbf{b} \in \mathbb{R}^{m}$ is the image of at most one $\mathbf{x} \in \mathbb{R}^{n}$.

If T is both injective and surjective we say that T is a bijection.
How can we algorithmically determine if linear maps have these properties?

§1.9 Example

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right] .
$$

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right] .
$$

What is the domain/codomain of T ?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes!

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes! No matter what $\mathbf{b} \in \mathbb{R}^{3}$ we choose, the augmented matrix $[A \mid \mathbf{b}]$ corresponds to a consistent system.

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes! No matter what $\mathbf{b} \in \mathbb{R}^{3}$ we choose, the augmented matrix $[A \mid \mathbf{b}]$ corresponds to a consistent system. Is T one-to-one?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes! No matter what $\mathbf{b} \in \mathbb{R}^{3}$ we choose, the augmented matrix $[A \mid \mathbf{b}]$ corresponds to a consistent system. Is T one-to-one? No!

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes! No matter what $\mathbf{b} \in \mathbb{R}^{3}$ we choose, the augmented matrix $[A \mid \mathbf{b}]$ corresponds to a consistent system. Is T one-to-one? No! Let $\mathbf{b} \in \mathbb{R}^{3}$.

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes! No matter what $\mathbf{b} \in \mathbb{R}^{3}$ we choose, the augmented matrix $[A \mid \mathbf{b}]$ corresponds to a consistent system. Is T one-to-one? No! Let $\mathbf{b} \in \mathbb{R}^{3}$. How many solutions does the linear system $[A \mid \mathbf{b}]$ have?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 0 & 17
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
Is T onto? Yes! No matter what $\mathbf{b} \in \mathbb{R}^{3}$ we choose, the augmented matrix $[A \mid \mathbf{b}]$ corresponds to a consistent system. Is T one-to-one? No! Let $\mathbf{b} \in \mathbb{R}^{3}$. How many solutions does the linear system $[A \mid \mathbf{b}]$ have? Infinitely many since x_{3} is free.

§1.9 Example

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What is the domain/codomain of T ?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$. Is T onto?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.
Is T onto? No!

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.
Is T onto? No! Can you find a $\mathbf{b} \in \mathbb{R}^{5}$ so that the system $[A \mid \mathbf{b}]$ is inconsistent?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.
Is T onto? No! Can you find a $\mathbf{b} \in \mathbb{R}^{5}$ so that the system $[A \mid \mathbf{b}]$ is inconsistent?
Is T one-to-one?

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What is the domain/codomain of $T ? T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.
Is T onto? No! Can you find a $\mathbf{b} \in \mathbb{R}^{5}$ so that the system $[A \mid \mathbf{b}]$ is inconsistent?
Is T one-to-one? Yes!

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What is the domain/codomain of T ? $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.
Is T onto? No! Can you find a $\mathbf{b} \in \mathbb{R}^{5}$ so that the system $[A \mid \mathbf{b}]$ is inconsistent?
Is T one-to-one? Yes! Since there are no free variables, the system
$[A \mid \mathbf{b}]$ never has more that one solution.

§1.9 Example

Let T have standard matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 5 \\
0 & -7 & 11 & -13 \\
0 & 0 & 19 & 17 \\
0 & 0 & 0 & 23 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What is the domain/codomain of T ? $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$.
Is T onto? No! Can you find a $\mathbf{b} \in \mathbb{R}^{5}$ so that the system $[A \mid \mathbf{b}]$ is inconsistent?
Is T one-to-one? Yes! Since there are no free variables, the system [$A \mid \mathbf{b}]$ never has more that one solution.
Can you see an easy way to define a linear transformation T that is a bijection?

§1.9 Theorem 11

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.

§1.9 Theorem 11

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

§1.9 Theorem 11

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.

First note that $T(\mathbf{0})=\mathbf{0}$.

§1.9 Theorem 11

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.

First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?

§1.9 Theorem 11

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.

First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof? (\Rightarrow) :

§1.9 Theorem 11

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.

First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does $\mathbf{0}$.

§1.9 Theorem 11

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does 0.
(\Leftarrow) :

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does $\mathbf{0}$.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does 0.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T.

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does $\mathbf{0}$.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T. To show T is one-to-one, what must we show?

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does $\mathbf{0}$.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That \mathbf{b} has a unique preimage.

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does 0.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That \mathbf{b} has a unique preimage. OK, so let \mathbf{u}, \mathbf{v} be arbitrary elements in the preimage of \mathbf{b}.

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does 0.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That \mathbf{b} has a unique preimage. OK, so let \mathbf{u}, \mathbf{v} be arbitrary elements in the preimage of \mathbf{b}. It suffices to show $\mathbf{u}=\mathbf{v}$.

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.
First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does $\mathbf{0}$.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That \mathbf{b} has a unique preimage. OK, so let \mathbf{u}, \mathbf{v} be arbitrary elements in the preimage of \mathbf{b}. It suffices to show $\mathbf{u}=\mathbf{v}$. But

$$
\mathbf{0}=\mathbf{b}-\mathbf{b}=T(\mathbf{u})-T(\mathbf{v})=T(\mathbf{u}-\mathbf{v}) .
$$

§1.9 Theorem 11

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof.

First note that $T(\mathbf{0})=\mathbf{0}$. What's the proof?
(\Rightarrow) : Every element in the image has a unique preimage. In particular, so does $\mathbf{0}$.
(\Leftarrow) : Assume $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution. Now let $\mathbf{b} \in \mathbb{R}^{m}$ be an arbitrary element in the image of T. To show T is one-to-one, what must we show? That \mathbf{b} has a unique preimage. OK, so let \mathbf{u}, \mathbf{v} be arbitrary elements in the preimage of \mathbf{b}. It suffices to show $\mathbf{u}=\mathbf{v}$. But

$$
\mathbf{0}=\mathbf{b}-\mathbf{b}=T(\mathbf{u})-T(\mathbf{v})=T(\mathbf{u}-\mathbf{v}) .
$$

Can you see why we are done?

§1.9 Theorem 12

§1.9 Theorem 12

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A.

§1.9 Theorem 12

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:

§1.9 Theorem 12

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

§1.9 Theorem 12

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

Proof.

§1.9 Theorem 12

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

Proof.
The image of T is the span of the columns.

§1.9 Theorem 12

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

Proof.
The image of T is the span of the columns.
(b) T is one-to-one if and only if the columns of A are linearly independent.

§1.9 Theorem 12

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

Proof.
The image of T is the span of the columns.
(b) T is one-to-one if and only if the columns of A are linearly independent.

Proof.

§1.9 Theorem 12

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

Proof.
The image of T is the span of the columns.
(b) T is one-to-one if and only if the columns of A are linearly independent.

Proof.
We saw that the columns are linearly independent if and only if $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

§1.9 Theorem 12

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with standard matrix A. Then:
(a) T is onto if and only if the columns of A span \mathbb{R}^{m}.

Proof.
The image of T is the span of the columns.
(b) T is one-to-one if and only if the columns of A are linearly independent.

Proof.
We saw that the columns are linearly independent if and only if $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Now apply previous theorem.

Classwork

Classwork

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork07.pdf

