Lecture 06

Math 22 Summer 2017
July 03, 2017

Just for today

- Review slash finish up $\S 1.7$ on linear independence
- §1.8 Linear transformations

§1.7 Linear Independence

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution.

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution. We say the set is linearly dependent if there exist weights c_{1}, \ldots, c_{n} (not all zero!) so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution. We say the set is linearly dependent if there exist weights c_{1}, \ldots, c_{n} (not all zero!) so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

Note that "not all zero" is different from "all not zero".

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution. We say the set is linearly dependent if there exist weights c_{1}, \ldots, c_{n} (not all zero!) so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

Note that "not all zero" is different from "all not zero".

§1.7 Theorem 7

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.
Theorem
A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others.

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.
Theorem
A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.
Theorem
A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

As an example, consider three linearly dependent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{2}$.

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.
Theorem
A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

As an example, consider three linearly dependent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{2}$. Does it follow that $\mathbf{v}_{3} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.
Theorem
A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

As an example, consider three linearly dependent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{2}$. Does it follow that $\mathbf{v}_{3} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$? Not necessarily!

§1.7 Theorem 7

Recall our characterization of linear dependence from last time.
Theorem
A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

As an example, consider three linearly dependent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{2}$. Does it follow that $\mathbf{v}_{3} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$? Not necessarily! Example?

§1.7 Classwork

§1.7 Classwork

Find all values of $h \in \mathbb{R}$ for which the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-5 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
5 \\
h
\end{array}\right]
$$

form a linearly dependent set.

§1.7 Classwork

Find all values of $h \in \mathbb{R}$ for which the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-5 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
5 \\
h
\end{array}\right]
$$

form a linearly dependent set. Well,

$$
\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 3 & -1 \\
0 & -2 & 4 \\
0 & 0 & h-6
\end{array}\right] .
$$

§1.7 Classwork

Find all values of $h \in \mathbb{R}$ for which the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-5 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
5 \\
h
\end{array}\right]
$$

form a linearly dependent set. Well,

$$
\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 3 & -1 \\
0 & -2 & 4 \\
0 & 0 & h-6
\end{array}\right] .
$$

So the set is dependent if and only if $h=6$.

§1.7 Classwork

Let A be a $m \times n$ matrix with the property that for every $\mathbf{b} \in \mathbb{R}^{m}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has at most one solution.

§1.7 Classwork

Let A be a $m \times n$ matrix with the property that for every $\mathbf{b} \in \mathbb{R}^{m}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has at most one solution. Show that the columns of A are linearly independent.

§1.7 Classwork

§1.7 Classwork

If $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, is $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?

§1.7 Classwork

If $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, is $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?
Yes! Although this seems like a trivial result, the significance is that if we have a space that is spanned by vectors, we can eliminate redundant vectors until we have a linearly independent set.

§1.7 Classwork

If $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, is $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?
Yes! Although this seems like a trivial result, the significance is that if we have a space that is spanned by vectors, we can eliminate redundant vectors until we have a linearly independent set. Such a set is called a basis.

§1.8 Linear transformations

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Recall some of the terminology here: mapping, domain, codomain, image, range, etc

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Recall some of the terminology here: mapping, domain, codomain, image, range, etc

We will mainly be concerned with functions defined by a matrix acting on a vector.

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Recall some of the terminology here: mapping, domain, codomain, image, range, etc

We will mainly be concerned with functions defined by a matrix acting on a vector.

More precisely, for $\mathbf{x} \in \mathbb{R}^{n}$ and $A_{m \times n}$ matrix, we define a map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $T(\mathbf{x}):=A \mathbf{x}$.

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Recall some of the terminology here: mapping, domain, codomain, image, range, etc

We will mainly be concerned with functions defined by a matrix acting on a vector.

More precisely, for $\mathbf{x} \in \mathbb{R}^{n}$ and $A_{m \times n}$ matrix, we define a map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $T(\mathbf{x}):=A \mathbf{x}$.

Recall the linearity properties of "left multiplication by A ".

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Recall some of the terminology here: mapping, domain, codomain, image, range, etc

We will mainly be concerned with functions defined by a matrix acting on a vector.

More precisely, for $\mathbf{x} \in \mathbb{R}^{n}$ and $A_{m \times n}$ matrix, we define a map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $T(\mathbf{x}):=A \mathbf{x}$.

Recall the linearity properties of "left multiplication by A ".
Hence the name linear transformation or linear map.

§1.8 Linear transformations

We will be considering functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Recall some of the terminology here: mapping, domain, codomain, image, range, etc

We will mainly be concerned with functions defined by a matrix acting on a vector.

More precisely, for $\mathbf{x} \in \mathbb{R}^{n}$ and $A_{m \times n}$ matrix, we define a map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $T(\mathbf{x}):=A \mathbf{x}$.
Recall the linearity properties of "left multiplication by A ".
Hence the name linear transformation or linear map.
Linear maps preserve the algebraic operations of addition and scalar multiplication.

§1.8 Example

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ?

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ? Codomain?

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ? Codomain?
What is the image of \mathbf{u} under the map T ?

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ? Codomain?
What is the image of \mathbf{u} under the map T ?
Find an element \mathbf{x} in the domain such that $T(\mathbf{x})=\mathbf{b}$.

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ? Codomain?
What is the image of \mathbf{u} under the map T ?
Find an element \mathbf{x} in the domain such that $T(\mathbf{x})=\mathbf{b}$.
Is this the only solution?

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ? Codomain?
What is the image of \mathbf{u} under the map T ?
Find an element \mathbf{x} in the domain such that $T(\mathbf{x})=\mathbf{b}$.
Is this the only solution?
Is \mathbf{c} in the image of T ?

§1.8 Example

Define T by left multiplication by A, where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

What is the domain of T ? Codomain?
What is the image of \mathbf{u} under the map T ?
Find an element \mathbf{x} in the domain such that $T(\mathbf{x})=\mathbf{b}$.
Is this the only solution?
Is \mathbf{c} in the image of T ?
How would this question change if A were not in REF?

§1.8 Classwork

https://math.dartmouth.edu/~m22x17/section2lectures/ classwork06.pdf

