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Just for today

I Finish up §1.5
I Part of §1.6 on network flows
I §1.7 Linear Independence



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...
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§1.5 Example

A general solution to the system Ax = 0 (for A defined previously)
is given by:

x =


3x3 + x5

−2x3 + 3x5
x3

−3x5
x5

 = x3


3
−2

1
0
0

 + x5


1
3
0
−3

1

 .

What is the geometric interpretation of the solution set?

Now let b =


1
1
0
0

 and consider the nonhomogeneous linear system

Ax = b.
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§1.5 Example

For A and b defined above, we see that a general solution to
Ax = b is given by

x =


1
1
0
0
0
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1
3
0
−3
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
How does a general solution to Ax = b relate to a general solution
to Ax = 0? We call the constant vector p a particular solution to
the matrix equation Ax = b. A solution to the homogeneous
system is denoted by vh, and we note that every solution to
Ax = b has the form p + vh with p the particular solution and vh
some solution to the homogeneous system. Geometrically, the
homogeneous solutions define a plane through the origin in R5.
Changing the b translates the plane by the particular solution
vector. What would change if A was not given to us in RREF?
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§1.5 Theorem 6

Theorem
Suppose that the equation Ax = b is consistent for some given b,
and let p be a particular solution. Then the solution set of Ax = b
is the set of all vectors of the form w = p + vh where vh is a
solution to the homogeneous equation Ax = 0.

Let S be the set of solutions to Ax = b. Let
T = {p + vh : vh satisfies Ax = 0}. What do we need to show to
prove this theorem? The equality of sets S = T .
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§1.5 Proof of Theorem 6

Proof.
(T ⊆ S):
An arbitrary element of T is of the form p + vh. But Ap = b and
Avh = 0. How do we conclude that A(p + vh) = b? By linearity of
the map defined by A!

(S ⊆ T ):
For the reverse containment let w ∈ S be any solution to Ax = b.
This means Aw = b. But we also know that Ap = b. Can you see
how to get a solution to Ax = 0 from this?

A(w− p) = Aw− Ap = b− b = 0.

Thus vh := w− p satisfies Ax− 0 and w = p + vh. This shows
that w ∈ S and concludes the proof.
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The total flow in equals the total flow out:
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100 + 400 = x4 + x5

x1 + x5 = 600

Now we can use linear algebra to answer questions about the
network!
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§1.6 Network flows

First let’s solve the linear system arising from the network.
0 0 1 0 0 400
1 1 0 0 0 800
0 1 −1 1 0 300
0 0 0 1 1 500
1 0 0 0 1 600

 ∼


1 0 0 0 1 600
0 1 0 0 −1 200
0 0 1 0 0 400
0 0 0 1 1 500
0 0 0 0 0 0


So a general solution to this linear system is given by

x1 = 600− x5

x2 = 200 + x5

x3 = 400
x4 = 500− x5

x5 free

When dealing with network flows, a general solution of this form is
called a general flow pattern for the network.
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§1.6 Network flows

We saw that our network has the following general flow pattern.
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Depending on the assumptions about the network, the variables
could be more constrained than indicated in the general flow
pattern. For example, suppose that the flow between each node is
assumed to be nonnegative. How does this further constrain the
variables? The flows between the nodes are given by the variables
x1, x2, x4, x5. If these are all nonnegative, what does that tell us
about x5? 0 ≤ x5 ≤ 500 (can also write x ∈ [0, 500])
So we see that in this application x5 is not quite free.
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§1.6 Network flows

We saw that if we assume only nonnegative flow values between
nodes, then 0 ≤ x5 ≤ 500.

x1 = 600− x5

x2 = 200 + x5

x3 = 400
x4 = 500− x5

x5 ∈ [0, 500]

The above constraint on the free variable x5 allows us to get
conditions on the other variables written in terms of x5.
In particular, what can we say about x1? x1 ∈ [100, 600].
What about for x2? x2 ∈ [200, 700].
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§1.7 Linear Independence

Definition
Let {v1, . . . , vn} be an (indexed) set of vectors in Rm.
We say the set is linearly independent if the vector equation

x1v1 + · · ·+ xnvn = 0

has only the trivial solution. We say the set is linearly dependent
if there exist weights c1, . . . , cn (not all zero!) so that

c1v1 + · · ·+ cnvn = 0.

Note that “not all zero” is different from “all not zero”.
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§1.7 Example

Let S be the set of vectors

{v1, v2, v3} =
{[

1
0

]
,

[
0
1

]
,

[
2
−7

]}
.

Is S linearly independent? No. 2v1 − 7v2 − v3 = 0 is a dependence
relation among these vectors. What about subsets of S? How can
we be more systematic about this?
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§1.7 Linear independence and Ax = 0

Let a1, . . . , an ∈ Rm. How can we tell if these vectors form a
linearly independent set? Well, this is equivalent to asking about
solutions to the vector equation

x1a1 + · · ·+ xnan = 0.

But as we saw, this is equivalent to asking about solutions to the
matrix equation Ax = 0 where A = [a1 · · · an]. More precisely, the
vectors a1, . . . , an have a dependence relation if and only if Ax = 0
has a nontrivial solution. When does this happen? Precisely when
there is at least one free variable.

Let’s do an example with 4 vectors in R3.
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§1.7 Theorem 8

Theorem
If a set contains more vectors than there are entries in each vector,
then the set is linearly dependent.

Proof.
See previous slide.
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§1.7 More examples

Is the set {0} linearly independent? No. In fact, any set of vectors
containing 0 is linearly dependent. What’s the proof?

True of False? If {v1, . . . , vp} is linearly dependent, then so is any
set that contains it. True. What’s the proof?

Suppose we have the set {v1, . . . , vp}. Also suppose that v1 is a
linear combination of the other vectors in this set. What does this
tell us about the linear independence or dependence of the set?
It’s dependent. What’s the proof?
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§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination of
the other vectors in the set, then that set is linearly dependent.
What about the converse statement? If a set is linearly dependent,
is it true that one vector in the set is a linear combination of the
others? If 0 is in the set then it is easy to see that the answer is
yes. What about for sets that don’t contain 0?

More precisely, assume S = {v1, . . . , vp} is linearly dependent and
vi 6= 0 for all i . Then there exist c1, . . . , cp ∈ R (not all zero) with

c1v1 + · · ·+ cpvp = 0.

Let cj 6= 0. Then

cjvj = −c1v1 − · · · − cj−1vj−1 − cj+1vj+1 − · · · − cpvp.

Could all of the scalars on the RHS of the equation be zero? No!
Since we assumed vj 6= 0. Thus, dividing by cj we get vj as a linear
combination of the other vectors.
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Could all of the scalars on the RHS of the equation be zero? No!
Since we assumed vj 6= 0. Thus, dividing by cj we get vj as a linear
combination of the other vectors.
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§1.7 Theorem 7

We summarize our characterization of linear dependence in the
following theorem.

Theorem
A set S = {v1, . . . , vp} of two or more vectors is linearly dependent
if and only if at least one of the vectors is a linear combination of
the others. Said another way, if and only if at least one of the
vectors is in the span of the others.

Proof.
See previous slide.

Note that a set with one vector {v} is linearly dependent if and
only if v = 0.

Suppose v 6= 0 and we want to find a vector w so that {v, w} is
linearly independent. By the theorem, such a w cannot be in the
span of v which is just all scalar multiples of v.
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§1.7 Classwork

Find all values of h ∈ R for which the vectors

v1 =

 1
−1

4

 , v2 =

 3
−5

7

 , v3 =

−1
5
h


form a linearly dependent set. Well,

[v1 v2 v3] ∼

 1 3 −1
0 −2 4
0 0 h − 6

 .

So the set is dependent if and only if h = 6.
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Let A be a m × n matrix with the property that for every b ∈ Rm,
the matrix equation Ax = b has at most one solution. Show that
the columns of A are linearly independent.
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If w ∈ Span{u, v}, is Span{u, v, w} = Span{u, v}?

Yes! Although this seems like a trivial result, the significance is
that if we have a space that is spanned by vectors, we can
eliminate redundant vectors until we have a linearly independent
set. Such a set is called a basis.
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