Lecture 05

Math 22 Summer 2017 Section 2
June 30, 2017

Lecture 05

Math 22 Summer 2017 Section 2
June 30, 2017

Just for today

- Finish up §1.5
- Part of $\S 1.6$ on network flows
- §1.7 Linear Independence

§1.5 Example

§1.5 Example

We now do an example to illustrate the next Theorem.

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix.

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system?

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

Suppose now we choose a specific A in RREF given by

$$
\left[\begin{array}{rrrrr}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

Suppose now we choose a specific A in RREF given by

$$
\left[\begin{array}{rrrrr}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How many free variables do we have in this case?

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

Suppose now we choose a specific A in RREF given by

$$
\left[\begin{array}{rrrrr}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How many free variables do we have in this case? As we've seen before with a single free variable, we can write a general solution to this system using a parametric vector equation...

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

$$
\mathbf{x}=\left[\begin{array}{r}
3 x_{3}+x_{5} \\
-2 x_{3}+3 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

$$
\mathbf{x}=\left[\begin{array}{r}
3 x_{3}+x_{5} \\
-2 x_{3}+3 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

What is the geometric interpretation of the solution set?

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

$$
\mathbf{x}=\left[\begin{array}{r}
3 x_{3}+x_{5} \\
-2 x_{3}+3 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

What is the geometric interpretation of the solution set?
Now let $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ and consider the nonhomogeneous linear system $A \mathbf{x}=\mathbf{b}$.

§1.5 Example

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$?

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system. Geometrically, the homogeneous solutions define a plane through the origin in \mathbb{R}^{5}.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system. Geometrically, the homogeneous solutions define a plane through the origin in \mathbb{R}^{5}. Changing the \mathbf{b} translates the plane by the particular solution vector.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system. Geometrically, the homogeneous solutions define a plane through the origin in \mathbb{R}^{5}. Changing the \mathbf{b} translates the plane by the particular solution vector. What would change if A was not given to us in RREF?

§1.5 Theorem 6

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$. Let $T=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h}\right.$ satisfies $\left.A \mathbf{x}=\mathbf{0}\right\}$.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$. Let $T=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h}\right.$ satisfies $\left.A \mathbf{x}=\mathbf{0}\right\}$. What do we need to show to prove this theorem?

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$. Let $T=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h}\right.$ satisfies $\left.A \mathbf{x}=\mathbf{0}\right\}$. What do we need to show to prove this theorem? The equality of sets $S=T$.

§1.5 Proof of Theorem 6

§1.5 Proof of Theorem 6

Proof.

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$?

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T):$

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$.

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$.

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$.
This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

$$
A(\mathbf{w}-\mathbf{p})=A \mathbf{w}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

$$
A(\mathbf{w}-\mathbf{p})=A \mathbf{w}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

Thus $\mathbf{v}_{h}:=\mathbf{w}-\mathbf{p}$ satisfies $A \mathbf{x}-\mathbf{0}$ and $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

$$
A(\mathbf{w}-\mathbf{p})=A \mathbf{w}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

Thus $\mathbf{v}_{h}:=\mathbf{w}-\mathbf{p}$ satisfies $A \mathbf{x}-\mathbf{0}$ and $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$. This shows that $\mathbf{w} \in S$ and concludes the proof.

§1.6 Network flows

Consider the following network flow diagram.

§1.6 Network flows

Consider the following network flow diagram.

§1.6 Network flows

Consider the following network flow diagram.

Can you see how this defines a linear system?

§1.6 Network flows

The total flow in equals the total flow out:

§1.6 Network flows

The total flow in equals the total flow out:

$$
500+300+100+400=300+x_{3}+600
$$

§1.6 Network flows

The total flow in equals the total flow out:

$$
500+300+100+400=300+x_{3}+600
$$

The flow into a node equals the flow out of a node:

§1.6 Network flows

The total flow in equals the total flow out:

$$
500+300+100+400=300+x_{3}+600
$$

The flow into a node equals the flow out of a node:

$$
\begin{aligned}
300+500 & =x_{1}+x_{2} \\
x_{2}+x_{4} & =300+x_{3} \\
100+400 & =x_{4}+x_{5} \\
x_{1}+x_{5} & =600
\end{aligned}
$$

§1.6 Network flows

The total flow in equals the total flow out:

$$
500+300+100+400=300+x_{3}+600
$$

The flow into a node equals the flow out of a node:

$$
\begin{aligned}
300+500 & =x_{1}+x_{2} \\
x_{2}+x_{4} & =300+x_{3} \\
100+400 & =x_{4}+x_{5} \\
x_{1}+x_{5} & =600
\end{aligned}
$$

Now we can use linear algebra to answer questions about the network!

§1.6 Network flows

First let's solve the linear system arising from the network.

§1.6 Network flows

First let's solve the linear system arising from the network.

$$
\left[\begin{array}{rrrrrr}
0 & 0 & 1 & 0 & 0 & 400 \\
1 & 1 & 0 & 0 & 0 & 800 \\
0 & 1 & -1 & 1 & 0 & 300 \\
0 & 0 & 0 & 1 & 1 & 500 \\
1 & 0 & 0 & 0 & 1 & 600
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 1 & 600 \\
0 & 1 & 0 & 0 & -1 & 200 \\
0 & 0 & 1 & 0 & 0 & 400 \\
0 & 0 & 0 & 1 & 1 & 500 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

§1.6 Network flows

First let's solve the linear system arising from the network.

$$
\left[\begin{array}{rrrrrr}
0 & 0 & 1 & 0 & 0 & 400 \\
1 & 1 & 0 & 0 & 0 & 800 \\
0 & 1 & -1 & 1 & 0 & 300 \\
0 & 0 & 0 & 1 & 1 & 500 \\
1 & 0 & 0 & 0 & 1 & 600
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 1 & 600 \\
0 & 1 & 0 & 0 & -1 & 200 \\
0 & 0 & 1 & 0 & 0 & 400 \\
0 & 0 & 0 & 1 & 1 & 500 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So a general solution to this linear system is given by

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

§1.6 Network flows

First let's solve the linear system arising from the network.

$$
\left[\begin{array}{rrrrrr}
0 & 0 & 1 & 0 & 0 & 400 \\
1 & 1 & 0 & 0 & 0 & 800 \\
0 & 1 & -1 & 1 & 0 & 300 \\
0 & 0 & 0 & 1 & 1 & 500 \\
1 & 0 & 0 & 0 & 1 & 600
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 1 & 600 \\
0 & 1 & 0 & 0 & -1 & 200 \\
0 & 0 & 1 & 0 & 0 & 400 \\
0 & 0 & 0 & 1 & 1 & 500 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So a general solution to this linear system is given by

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

When dealing with network flows, a general solution of this form is called a general flow pattern for the network.

§1.6 Network flows

We saw that our network has the following general flow pattern.

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern.

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative.

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative. How does this further constrain the variables?

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative. How does this further constrain the variables? The flows between the nodes are given by the variables $x_{1}, x_{2}, x_{4}, x_{5}$.

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative. How does this further constrain the variables? The flows between the nodes are given by the variables $x_{1}, x_{2}, x_{4}, x_{5}$. If these are all nonnegative, what does that tell us about x_{5} ?

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative. How does this further constrain the variables? The flows between the nodes are given by the variables $x_{1}, x_{2}, x_{4}, x_{5}$. If these are all nonnegative, what does that tell us about $x_{5} ? 0 \leq x_{5} \leq 500$

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative. How does this further constrain the variables? The flows between the nodes are given by the variables $x_{1}, x_{2}, x_{4}, x_{5}$. If these are all nonnegative, what does that tell us about x_{5} ? $0 \leq x_{5} \leq 500$ (can also write $x \in[0,500]$)

§1.6 Network flows

We saw that our network has the following general flow pattern.

$$
\left\{\begin{array}{l}
x_{1}=600-x_{5} \\
x_{2}=200+x_{5} \\
x_{3}=400 \\
x_{4}=500-x_{5} \\
x_{5} \quad \text { free }
\end{array}\right.
$$

Depending on the assumptions about the network, the variables could be more constrained than indicated in the general flow pattern. For example, suppose that the flow between each node is assumed to be nonnegative. How does this further constrain the variables? The flows between the nodes are given by the variables $x_{1}, x_{2}, x_{4}, x_{5}$. If these are all nonnegative, what does that tell us about x_{5} ? $0 \leq x_{5} \leq 500$ (can also write $x \in[0,500]$) So we see that in this application x_{5} is not quite free.

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

$$
\begin{cases}x_{1} & =600-x_{5} \\ x_{2} & =200+x_{5} \\ x_{3} & =400 \\ x_{4} & =500-x_{5} \\ x_{5} & \in[0,500]\end{cases}
$$

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

$$
\begin{cases}x_{1} & =600-x_{5} \\ x_{2} & =200+x_{5} \\ x_{3} & =400 \\ x_{4} & =500-x_{5} \\ x_{5} & \in[0,500]\end{cases}
$$

The above constraint on the free variable x_{5} allows us to get conditions on the other variables written in terms of x_{5}.

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

$$
\begin{cases}x_{1} & =600-x_{5} \\ x_{2} & =200+x_{5} \\ x_{3} & =400 \\ x_{4} & =500-x_{5} \\ x_{5} & \in[0,500]\end{cases}
$$

The above constraint on the free variable x_{5} allows us to get conditions on the other variables written in terms of x_{5}.
In particular, what can we say about x_{1} ?

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

$$
\begin{cases}x_{1} & =600-x_{5} \\ x_{2} & =200+x_{5} \\ x_{3} & =400 \\ x_{4} & =500-x_{5} \\ x_{5} & \in[0,500]\end{cases}
$$

The above constraint on the free variable x_{5} allows us to get conditions on the other variables written in terms of x_{5}. In particular, what can we say about x_{1} ? $x_{1} \in[100,600]$.

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

$$
\begin{cases}x_{1} & =600-x_{5} \\ x_{2} & =200+x_{5} \\ x_{3} & =400 \\ x_{4} & =500-x_{5} \\ x_{5} & \in[0,500]\end{cases}
$$

The above constraint on the free variable x_{5} allows us to get conditions on the other variables written in terms of x_{5}. In particular, what can we say about x_{1} ? $x_{1} \in[100,600]$. What about for x_{2} ?

§1.6 Network flows

We saw that if we assume only nonnegative flow values between nodes, then $0 \leq x_{5} \leq 500$.

$$
\begin{cases}x_{1} & =600-x_{5} \\ x_{2} & =200+x_{5} \\ x_{3} & =400 \\ x_{4} & =500-x_{5} \\ x_{5} & \in[0,500]\end{cases}
$$

The above constraint on the free variable x_{5} allows us to get conditions on the other variables written in terms of x_{5}. In particular, what can we say about x_{1} ? $x_{1} \in[100,600]$. What about for x_{2} ? $x_{2} \in[200,700]$.

§1.7 Linear Independence

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution.

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution. We say the set is linearly dependent if there exist weights c_{1}, \ldots, c_{n} (not all zero!) so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution. We say the set is linearly dependent if there exist weights c_{1}, \ldots, c_{n} (not all zero!) so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

Note that "not all zero" is different from "all not zero".

§1.7 Linear Independence

Definition

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an (indexed) set of vectors in \mathbb{R}^{m}.
We say the set is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}
$$

has only the trivial solution. We say the set is linearly dependent if there exist weights c_{1}, \ldots, c_{n} (not all zero!) so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

Note that "not all zero" is different from "all not zero".

§1.7 Example

§1.7 Example

Let S be the set of vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-7
\end{array}\right]\right\} .
$$

§1.7 Example

Let S be the set of vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-7
\end{array}\right]\right\} .
$$

Is S linearly independent?

§1.7 Example

Let S be the set of vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-7
\end{array}\right]\right\}
$$

Is S linearly independent? No.

§1.7 Example

Let S be the set of vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-7
\end{array}\right]\right\}
$$

Is S linearly independent? No. $2 \mathbf{v}_{1}-7 \mathbf{v}_{2}-\mathbf{v}_{3}=\mathbf{0}$ is a dependence relation among these vectors.

§1.7 Example

Let S be the set of vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-7
\end{array}\right]\right\}
$$

Is S linearly independent? No. $2 \mathbf{v}_{1}-7 \mathbf{v}_{2}-\mathbf{v}_{3}=\mathbf{0}$ is a dependence relation among these vectors. What about subsets of S ?

§1.7 Example

Let S be the set of vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-7
\end{array}\right]\right\} .
$$

Is S linearly independent? No. $2 \mathbf{v}_{1}-7 \mathbf{v}_{2}-\mathbf{v}_{3}=\mathbf{0}$ is a dependence relation among these vectors. What about subsets of S ? How can we be more systematic about this?

§1.7 Linear independence and $A \mathbf{x}=\mathbf{0}$

§1.7 Linear independence and $A \mathbf{x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$.

§1.7 Linear independence and $A \mathbf{x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set?

§1.7 Linear independence and $\mathbf{A x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set? Well, this is equivalent to asking about solutions to the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

§1.7 Linear independence and $\mathbf{A x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set? Well, this is equivalent to asking about solutions to the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

But as we saw, this is equivalent to asking about solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$.

§1.7 Linear independence and $\mathbf{A x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set? Well, this is equivalent to asking about solutions to the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

But as we saw, this is equivalent to asking about solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$. More precisely, the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ have a dependence relation if and only if $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.

§1.7 Linear independence and $\mathbf{A x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set? Well, this is equivalent to asking about solutions to the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

But as we saw, this is equivalent to asking about solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$. More precisely, the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ have a dependence relation if and only if $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. When does this happen?

§1.7 Linear independence and $\mathbf{A x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set? Well, this is equivalent to asking about solutions to the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

But as we saw, this is equivalent to asking about solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$. More precisely, the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ have a dependence relation if and only if $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. When does this happen? Precisely when there is at least one free variable.

§1.7 Linear independence and $\mathbf{A x}=\mathbf{0}$

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$. How can we tell if these vectors form a linearly independent set? Well, this is equivalent to asking about solutions to the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

But as we saw, this is equivalent to asking about solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$ where $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$. More precisely, the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ have a dependence relation if and only if $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution. When does this happen? Precisely when there is at least one free variable.

Let's do an example with 4 vectors in \mathbb{R}^{3}.

§1.7 Theorem 8

§1.7 Theorem 8

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

§1.7 Theorem 8

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

Proof.

See previous slide.

§1.7 More examples

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent?

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True. What's the proof?

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True. What's the proof?

Suppose we have the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True. What's the proof?

Suppose we have the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Also suppose that \mathbf{v}_{1} is a linear combination of the other vectors in this set.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True. What's the proof?

Suppose we have the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Also suppose that \mathbf{v}_{1} is a linear combination of the other vectors in this set. What does this tell us about the linear independence or dependence of the set?

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True. What's the proof?

Suppose we have the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Also suppose that \mathbf{v}_{1} is a linear combination of the other vectors in this set. What does this tell us about the linear independence or dependence of the set? It's dependent.

§1.7 More examples

Is the set $\{\mathbf{0}\}$ linearly independent? No. In fact, any set of vectors containing $\mathbf{0}$ is linearly dependent. What's the proof?

True of False? If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, then so is any set that contains it. True. What's the proof?

Suppose we have the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Also suppose that \mathbf{v}_{1} is a linear combination of the other vectors in this set. What does this tell us about the linear independence or dependence of the set? It's dependent. What's the proof?

§1.7 Characterizing linear dependence

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination on the other vectors in the set, then that set is linearly dependent.

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination on the other vectors in the set, then that set is linearly dependent. What about the converse statement?

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination ol the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others?

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination o the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes.

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination o the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination ol the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i.

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination ol the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i. Then there exist $c_{1}, \ldots, c_{p} \in \mathbb{R}$ (not all zero) with

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination of the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i. Then there exist $c_{1}, \ldots, c_{p} \in \mathbb{R}$ (not all zero) with

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

Let $c_{j} \neq 0$.

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination o the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i. Then there exist $c_{1}, \ldots, c_{p} \in \mathbb{R}$ (not all zero) with

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

Let $c_{j} \neq 0$. Then

$$
c_{j} \mathbf{v}_{j}=-c_{1} \mathbf{v}_{1}-\cdots-c_{j-1} \mathbf{v}_{j-1}-c_{j+1} \mathbf{v}_{j+1}-\cdots-c_{p} \mathbf{v}_{p}
$$

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination of the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i. Then there exist $c_{1}, \ldots, c_{p} \in \mathbb{R}$ (not all zero) with

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

Let $c_{j} \neq 0$. Then

$$
c_{j} \mathbf{v}_{j}=-c_{1} \mathbf{v}_{1}-\cdots-c_{j-1} \mathbf{v}_{j-1}-c_{j+1} \mathbf{v}_{j+1}-\cdots-c_{p} \mathbf{v}_{p}
$$

Could all of the scalars on the RHS of the equation be zero?

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination o the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i. Then there exist $c_{1}, \ldots, c_{p} \in \mathbb{R}$ (not all zero) with

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Let $c_{j} \neq 0$. Then

$$
c_{j} \mathbf{v}_{j}=-c_{1} \mathbf{v}_{1}-\cdots-c_{j-1} \mathbf{v}_{j-1}-c_{j+1} \mathbf{v}_{j+1}-\cdots-c_{p} \mathbf{v}_{p}
$$

Could all of the scalars on the RHS of the equation be zero? No! Since we assumed $\mathbf{v}_{j} \neq 0$.

§1.7 Characterizing linear dependence

We saw that if a set has a vector that is a linear combination of the other vectors in the set, then that set is linearly dependent. What about the converse statement? If a set is linearly dependent, is it true that one vector in the set is a linear combination of the others? If $\mathbf{0}$ is in the set then it is easy to see that the answer is yes. What about for sets that don't contain $\mathbf{0}$?

More precisely, assume $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{i} \neq \mathbf{0}$ for all i. Then there exist $c_{1}, \ldots, c_{p} \in \mathbb{R}$ (not all zero) with

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Let $c_{j} \neq 0$. Then

$$
c_{j} \mathbf{v}_{j}=-c_{1} \mathbf{v}_{1}-\cdots-c_{j-1} \mathbf{v}_{j-1}-c_{j+1} \mathbf{v}_{j+1}-\cdots-c_{p} \mathbf{v}_{p}
$$

Could all of the scalars on the RHS of the equation be zero? No! Since we assumed $\mathbf{v}_{j} \neq 0$. Thus, dividing by c_{j} we get \mathbf{v}_{j} as a linear combination of the other vectors.

§1.7 Theorem 7

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

Theorem

A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others.

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

Theorem

A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

Theorem

A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

Proof.

See previous slide.

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

Theorem

A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

Proof.

See previous slide.
Note that a set with one vector $\{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v}=\mathbf{0}$.

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

Theorem

A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

Proof.

See previous slide.
Note that a set with one vector $\{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v}=\mathbf{0}$.

Suppose $\mathbf{v} \neq \mathbf{0}$ and we want to find a vector \mathbf{w} so that $\{\mathbf{v}, \mathbf{w}\}$ is linearly independent.

§1.7 Theorem 7

We summarize our characterization of linear dependence in the following theorem.

Theorem

A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others. Said another way, if and only if at least one of the vectors is in the span of the others.

Proof.

See previous slide.
Note that a set with one vector $\{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v}=\mathbf{0}$.

Suppose $\mathbf{v} \neq \mathbf{0}$ and we want to find a vector \mathbf{w} so that $\{\mathbf{v}, \mathbf{w}\}$ is linearly independent. By the theorem, such a \mathbf{w} cannot be in the span of \mathbf{v} which is just all scalar multiples of \mathbf{v}.

§1.7 Classwork

§1.7 Classwork

Find all values of $h \in \mathbb{R}$ for which the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-5 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
5 \\
h
\end{array}\right]
$$

form a linearly dependent set.

§1.7 Classwork

Find all values of $h \in \mathbb{R}$ for which the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-5 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
5 \\
h
\end{array}\right]
$$

form a linearly dependent set. Well,

$$
\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 3 & -1 \\
0 & -2 & 4 \\
0 & 0 & h-6
\end{array}\right] .
$$

§1.7 Classwork

Find all values of $h \in \mathbb{R}$ for which the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-5 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
5 \\
h
\end{array}\right]
$$

form a linearly dependent set. Well,

$$
\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 3 & -1 \\
0 & -2 & 4 \\
0 & 0 & h-6
\end{array}\right] .
$$

So the set is dependent if and only if $h=6$.

§1.7 Classwork

Let A be a $m \times n$ matrix with the property that for every $\mathbf{b} \in \mathbb{R}^{m}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has at most one solution.

§1.7 Classwork

Let A be a $m \times n$ matrix with the property that for every $\mathbf{b} \in \mathbb{R}^{m}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has at most one solution. Show that the columns of A are linearly independent.

§1.7 Classwork

§1.7 Classwork

If $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, is $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?

§1.7 Classwork

If $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, is $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?
Yes! Although this seems like a trivial result, the significance is that if we have a space that is spanned by vectors, we can eliminate redundant vectors until we have a linearly independent set.

§1.7 Classwork

If $\mathbf{w} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, is $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$?
Yes! Although this seems like a trivial result, the significance is that if we have a space that is spanned by vectors, we can eliminate redundant vectors until we have a linearly independent set. Such a set is called a basis.

