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Just for today

I §1.4 Matrix equations
I §1.5 More on solution sets



§1.4 Definition of Ax

Definition

Let A =
[

a1 · · · an
]

with ai ∈ Rm. For each i , let ai =

 a1i
...

ami

.

Now for x ∈ Rn we can define Ax as follows:

Ax =
[

a1 · · · an
]  x1

...
xn

 := x1a1 + · · ·+ xnan.

Examples? What is required for this definition to make sense?
Where does the vector Ax live?
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§1.4 Theorem 3

The definition of Ax now allows us to consider
matrix equations of the form Ax = b. We can summarize how this
relates to linear systems with the following theorem.

Theorem
If A is an m × n matrix with columns a1, . . . , an (where do these
vectors live?) and b ∈ Rm... then Ax = b has the same solution
set as the vector equation

x1a1 + · · ·+ xnan = b.

Moreover, both of these solution sets are the same as the solution
set of the linear system whose augmented matrix is[

a1 · · · an b
]

.

Examples?
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§1.4 Matrix multiplication

By the definition of Ax, we compute the following example for a
specific choice of A and x.

Ax =
[
−10 −2 0

0 1 5

]  3
−1

4


= 3

[
−10

0

]
− 1

[
−2

1

]
+ 4

[
0
5

]

=
[

3(−10) + (−1)(−2) + 4(0)
3(0) + (−1)(1) + 4(5)

]

Notice that the vector Ax ∈ R2 and the entries in Ax are given by
the dot products of the rows of A with x. In a similar way one
defines matrix multiplication which has Ax as a special case.
Lay refers to matrix multiplication as the row-vector rule.
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§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to
always consistent linear systems. More precisely we have...

Theorem
Let A be a m × n matrix. Then the following statements are
equivalent:

(a) For every b ∈ Rm, the equation Ax = b has a solution.
(b) Every b ∈ Rm is a linear combination of the columns of A.
(c) The columns of A span all of Rm.
(d) A has a pivot position in every row.

This theorem says that a matrix A either has all of these properties
or none of these properties.
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§1.4 Proof of Theorem 4

To prove the previous theorem, let’s start with a few observations.

I Careful about
[

A b
]
6= A

I The first 3 statements follow directly from the definitions and
Theorem 3 (try to convince yourself of this!), so it suffices to
show the last statement about pivots is equivalent to any of
the others.

I The RREF of A does not depend on the vector b in the
augmented matrix

[
A b

]
.
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§1.4 Proof of Theorem 4

Proof.

We will prove (a) ⇐⇒ (d). Let A be given with reduced echelon
form R. Let b ∈ Rm be arbitrary.
(d) =⇒ (a): Suppose (d) is true. Then [A b] has RREF [R b′]
with no pivot in the last column. Why does (a) follow from this?
(a) =⇒ (d): We proceed by contrapositive. Suppose (d) is false
and try to show (a) is false. If (d) is false, then the last row of R
is all zeros. Since b is arbitrary, take b so that [R b′] is
inconsistent. How do we know such b exists? Now reverse the row
operations to get Ax = b not solvable.

Example of theorem in use?
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Theorem
If A is an m × n matrix, u, v ∈ Rn, and c ∈ R, then

(a) A(u + v) = Au + Av
(b) A(cu) = cA(u)

Proof.
Try to prove these as an exercise.
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§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear
algebra... namely that multiplication by an m × n matrix A defines
a linear map T : Rn → Rm.

Where have you seen linear maps before? On the vector space of
smooth functions C∞(R). Namely, for f a smooth function
(infinitely differentiable), define T (f ) to be the derivative of f .
Then we see that T is a linear map as well:

T (f + g) = (f + g)′ = f ′ + g ′ = T (f ) + T (g)
T (cf ) = (cf )′ = cf ′ = cT (f ).

The study of linear maps given by matrices is of primary
importance in linear algebra.
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§1.5 Homogeneous linear systems

Definition
A linear system is homogeneous if it can be written in the form
Ax = 0 with Am×n (notation for m × n matrix) and 0 ∈ Rm.

What can you observe about the solution set of a homogeneous
system? It always has the trivial solution of x = 0. Where does
this 0 live?

How can we tell if a homogeneous system has a nontrivial
solution? Well, we know that a consistent system has a unique
solution or infinitely many solutions. When do we get infinitely
many solutions? When we have free variables. When do we have
free variables? When the number of pivots is strictly less than the
number of variables.

To summarize, we have the following theorem...
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§1.5 Homogeneous linear systems

Theorem
If A is an m × n matrix and m < n (strictly),

then Ax = 0 always
has nontrivial solutions.

Proof.
This follows from discussion on previous slide: since the number of
pivots is ≤ m < n and the number of variables is n, we see that we
must have free variables in this case.
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§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.

Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system?

What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0



How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case?

As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

We now do an example to illustrate the next Theorem.

Consider Ax = 0 where A is a (nonzero) 4× 5 matrix.
Without a specific A what is the least number of free variables for
this system? What about the most number of free variables for
this system?

Suppose now we choose a specific A in RREF given by
1 0 −3 0 −1
0 1 2 0 −3
0 0 0 1 3
0 0 0 0 0


How many free variables do we have in this case? As we’ve seen
before with a single free variable, we can write a general solution
to this system using a parametric vector equation...



§1.5 Example

A general solution to the system Ax = 0 (for A defined previously)
is given by:

x =


3x3 + x5

−2x3 + 3x5
x3

−3x5
x5

 = x3


3
−2

1
0
0

 + x5


1
3
0
−3

1

 .

What is the geometric interpretation of the solution set?

Now let b =


1
1
0
0

 and consider the nonhomogeneous linear system

Ax = b.
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For A and b defined above, we see that a general solution to
Ax = b is given by

x =
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
How does a general solution to Ax = b relate to a general solution
to Ax = 0? We call the constant vector p a particular solution to
the matrix equation Ax = b. A solution to the homogeneous
system is denoted by vh, and we note that every solution to
Ax = b has the form p + vh with p the particular solution and vh
some solution to the homogeneous system. Geometrically, the
homogeneous solutions define a plane through the origin in R5.
Changing the b translates the plane by the particular solution
vector. What would change if A was not given to us in RREF?
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§1.5 Theorem 6

Theorem
Suppose that the equation Ax = b is consistent for some given b,
and let p be a particular solution. Then the solution set of Ax = b
is the set of all vectors of the form w = p + vh where vh is a
solution to the homogeneous equation Ax = 0.

Let S be the set of solutions to Ax = b. Let
T = {p + vh : vh satisfies Ax = 0}. What do we need to show to
prove this theorem? The equality of sets S = T .
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§1.5 Proof of Theorem 6

Proof.
(T ⊆ S):
An arbitrary element of T is of the form p + vh. But Ap = b and
Avh = 0. How do we conclude that A(p + vh) = b? By linearity of
the map defined by A!

(S ⊆ T ):
For the reverse containment let w ∈ S be any solution to Ax = b.
This means Aw = b. But we also know that Ap = b. Can you see
how to get a solution to Ax = 0 from this?

A(w− p) = Aw− Ap = b− b = 0.

Thus vh := w− p satisfies Ax− 0 and w = p + vh. This shows
that w ∈ S and concludes the proof.
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