Lecture 04

Math 22 Summer 2017 Section 2
June 28, 2017

Just for today

- §1.4 Matrix equations
- §1.5 More on solution sets
§1.4 Definition of $A x$

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$.

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$. For each i, let $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$.

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$. For each i, let $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$.
Now for $\mathbf{x} \in \mathbb{R}^{n}$ we can define $A \mathbf{x}$ as follows:

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$. For each i, let $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$.
Now for $\mathbf{x} \in \mathbb{R}^{n}$ we can define $A \mathbf{x}$ as follows:

$$
A \mathbf{x}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]:=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$. For each i, let $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$.
Now for $\mathbf{x} \in \mathbb{R}^{n}$ we can define $A \mathbf{x}$ as follows:

$$
A \mathbf{x}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]:=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

Examples?

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$. For each i, let $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$.
Now for $\mathbf{x} \in \mathbb{R}^{n}$ we can define $A \mathbf{x}$ as follows:

$$
A \mathbf{x}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]:=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

Examples? What is required for this definition to make sense?

§1.4 Definition of $A x$

Definition

Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i} \in \mathbb{R}^{m}$. For each i, let $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ \vdots \\ a_{m i}\end{array}\right]$.
Now for $\mathbf{x} \in \mathbb{R}^{n}$ we can define $A \mathbf{x}$ as follows:

$$
A \mathbf{x}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]:=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

Examples? What is required for this definition to make sense? Where does the vector $A \mathrm{x}$ live?

§1.4 Theorem 3

§1.4 Theorem 3

The definition of $A \mathbf{x}$ now allows us to consider matrix equations of the form $A \mathbf{x}=\mathbf{b}$.

§1.4 Theorem 3

The definition of $A \mathbf{x}$ now allows us to consider matrix equations of the form $A \mathbf{x}=\mathbf{b}$. We can summarize how this relates to linear systems with the following theorem.

§1.4 Theorem 3

The definition of $A \mathbf{x}$ now allows us to consider matrix equations of the form $A \mathbf{x}=\mathbf{b}$. We can summarize how this relates to linear systems with the following theorem.

Theorem

If A is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ (where do these vectors live?) and $\mathbf{b} \in \mathbb{R}^{m} \ldots$

§1.4 Theorem 3

The definition of $A \mathbf{x}$ now allows us to consider matrix equations of the form $A \mathbf{x}=\mathbf{b}$. We can summarize how this relates to linear systems with the following theorem.

Theorem

If A is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ (where do these vectors live?) and $\mathbf{b} \in \mathbb{R}^{m} \ldots$ then $A \mathbf{x}=\mathbf{b}$ has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

§1.4 Theorem 3

The definition of $A \mathbf{x}$ now allows us to consider matrix equations of the form $A \mathbf{x}=\mathbf{b}$. We can summarize how this relates to linear systems with the following theorem.

Theorem

If A is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ (where do these vectors live?) and $\mathbf{b} \in \mathbb{R}^{m} \ldots$ then $A \mathbf{x}=\mathbf{b}$ has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Moreover, both of these solution sets are the same as the solution set of the linear system whose augmented matrix is

$$
\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n} \mathbf{b}\right] .
$$

§1.4 Theorem 3

The definition of $A \mathbf{x}$ now allows us to consider matrix equations of the form $A \mathbf{x}=\mathbf{b}$. We can summarize how this relates to linear systems with the following theorem.

Theorem

If A is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ (where do these vectors live?) and $\mathbf{b} \in \mathbb{R}^{m} \ldots$ then $A \mathbf{x}=\mathbf{b}$ has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Moreover, both of these solution sets are the same as the solution set of the linear system whose augmented matrix is

$$
\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n} \mathbf{b}\right] .
$$

Examples?

§1.4 Matrix multiplication

§1.4 Matrix multiplication

By the definition of $A \mathbf{x}$, we compute the following example for a specific choice of A and \mathbf{x}.

§1.4 Matrix multiplication

By the definition of $A \mathbf{x}$, we compute the following example for a specific choice of A and \mathbf{x}.

$$
\begin{aligned}
A \mathbf{x} & =\left[\begin{array}{rrr}
-10 & -2 & 0 \\
0 & 1 & 5
\end{array}\right]\left[\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right] \\
& =3\left[\begin{array}{r}
-10 \\
0
\end{array}\right]-1\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+4\left[\begin{array}{l}
0 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
3(-10)+(-1)(-2)+4(0) \\
3(0)+(-1)(1)+4(5)
\end{array}\right]
\end{aligned}
$$

§1.4 Matrix multiplication

By the definition of $A \mathbf{x}$, we compute the following example for a specific choice of A and \mathbf{x}.

$$
\begin{aligned}
A \mathbf{x} & =\left[\begin{array}{rrr}
-10 & -2 & 0 \\
0 & 1 & 5
\end{array}\right]\left[\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right] \\
& =3\left[\begin{array}{r}
-10 \\
0
\end{array}\right]-1\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+4\left[\begin{array}{l}
0 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
3(-10)+(-1)(-2)+4(0) \\
3(0)+(-1)(1)+4(5)
\end{array}\right]
\end{aligned}
$$

Notice that the vector $A \mathbf{x} \in \mathbb{R}^{2}$ and the entries in $A \mathbf{x}$ are given by the dot products of the rows of A with \mathbf{x}.

§1.4 Matrix multiplication

By the definition of $A \mathbf{x}$, we compute the following example for a specific choice of A and \mathbf{x}.

$$
\begin{aligned}
A \mathbf{x} & =\left[\begin{array}{rrr}
-10 & -2 & 0 \\
0 & 1 & 5
\end{array}\right]\left[\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right] \\
& =3\left[\begin{array}{r}
-10 \\
0
\end{array}\right]-1\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+4\left[\begin{array}{l}
0 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
3(-10)+(-1)(-2)+4(0) \\
3(0)+(-1)(1)+4(5)
\end{array}\right]
\end{aligned}
$$

Notice that the vector $A \mathbf{x} \in \mathbb{R}^{2}$ and the entries in $A \mathbf{x}$ are given by the dot products of the rows of A with \mathbf{x}. In a similar way one defines matrix multiplication which has $A \mathbf{x}$ as a special case.

§1.4 Matrix multiplication

By the definition of $A \mathbf{x}$, we compute the following example for a specific choice of A and \mathbf{x}.

$$
\begin{aligned}
A \mathbf{x} & =\left[\begin{array}{rrr}
-10 & -2 & 0 \\
0 & 1 & 5
\end{array}\right]\left[\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right] \\
& =3\left[\begin{array}{r}
-10 \\
0
\end{array}\right]-1\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+4\left[\begin{array}{l}
0 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
3(-10)+(-1)(-2)+4(0) \\
3(0)+(-1)(1)+4(5)
\end{array}\right]
\end{aligned}
$$

Notice that the vector $A \mathbf{x} \in \mathbb{R}^{2}$ and the entries in $A \mathbf{x}$ are given by the dot products of the rows of A with \mathbf{x}. In a similar way one defines matrix multiplication which has $A \mathbf{x}$ as a special case. Lay refers to matrix multiplication as the row-vector rule.

§1.4 Theorem 4

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems.

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem
Let A be a $m \times n$ matrix.

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem

Let A be a $m \times n$ matrix. Then the following statements are equivalent:

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem

Let A be a $m \times n$ matrix. Then the following statements are equivalent:
(a) For every $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem

Let A be a $m \times n$ matrix. Then the following statements are equivalent:
(a) For every $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Every $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem

Let A be a $m \times n$ matrix. Then the following statements are equivalent:
(a) For every $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Every $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
(c) The columns of A span all of \mathbb{R}^{m}.

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem

Let A be a $m \times n$ matrix. Then the following statements are equivalent:
(a) For every $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Every $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
(c) The columns of A span all of \mathbb{R}^{m}.
(d) A has a pivot position in every row.

§1.4 Theorem 4

We can now characterize coefficient matrices A corresponding to always consistent linear systems. More precisely we have...

Theorem

Let A be a $m \times n$ matrix. Then the following statements are equivalent:
(a) For every $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Every $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
(c) The columns of A span all of \mathbb{R}^{m}.
(d) A has a pivot position in every row.

This theorem says that a matrix A either has all of these properties or none of these properties.

§1.4 Proof of Theorem 4

§1.4 Proof of Theorem 4

To prove the previous theorem, let's start with a few observations.

§1.4 Proof of Theorem 4

To prove the previous theorem, let's start with a few observations.

- Careful about $[A \mathbf{b}] \neq A$

§1.4 Proof of Theorem 4

To prove the previous theorem, let's start with a few observations.

- Careful about $[A \mathbf{b}] \neq A$
- The first 3 statements follow directly from the definitions and Theorem 3 (try to convince yourself of this!), so it suffices to show the last statement about pivots is equivalent to any of the others.

§1.4 Proof of Theorem 4

To prove the previous theorem, let's start with a few observations.

- Careful about $[A \mathbf{b}] \neq A$
- The first 3 statements follow directly from the definitions and Theorem 3 (try to convince yourself of this!), so it suffices to show the last statement about pivots is equivalent to any of the others.
- The RREF of A does not depend on the vector \mathbf{b} in the augmented matrix $[A \mathbf{b}]$.

§1.4 Proof of Theorem 4

Proof.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$:

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this?

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this?
$(a) \Longrightarrow(d)$:

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this?
$(a) \Longrightarrow(d)$: We proceed by contrapositive.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this? $(a) \Longrightarrow(d)$: We proceed by contrapositive. Suppose (d) is false and try to show (a) is false.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this? $(a) \Longrightarrow(d)$: We proceed by contrapositive. Suppose (d) is false and try to show (a) is false. If (d) is false, then the last row of R is all zeros.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this? $(a) \Longrightarrow(d)$: We proceed by contrapositive. Suppose (d) is false and try to show (a) is false. If (d) is false, then the last row of R is all zeros. Since \mathbf{b} is arbitrary, take \mathbf{b} so that $\left[R \mathbf{b}^{\prime}\right]$ is inconsistent.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this? $(a) \Longrightarrow(d)$: We proceed by contrapositive. Suppose (d) is false and try to show (a) is false. If (d) is false, then the last row of R is all zeros. Since \mathbf{b} is arbitrary, take \mathbf{b} so that $\left[R \mathbf{b}^{\prime}\right]$ is inconsistent. How do we know such \mathbf{b} exists?

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this? $(a) \Longrightarrow(d)$: We proceed by contrapositive. Suppose (d) is false and try to show (a) is false. If (d) is false, then the last row of R is all zeros. Since \mathbf{b} is arbitrary, take \mathbf{b} so that $\left[R \mathbf{b}^{\prime}\right]$ is inconsistent. How do we know such \mathbf{b} exists? Now reverse the row operations to get $A \mathbf{x}=\mathbf{b}$ not solvable.

§1.4 Proof of Theorem 4

Proof.

We will prove $(a) \Longleftrightarrow(d)$. Let A be given with reduced echelon form R. Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary.
$(d) \Longrightarrow(a)$: Suppose (d) is true. Then $[A \mathbf{b}]$ has RREF $\left[R \mathbf{b}^{\prime}\right]$ with no pivot in the last column. Why does (a) follow from this? $(a) \Longrightarrow(d)$: We proceed by contrapositive. Suppose (d) is false and try to show (a) is false. If (d) is false, then the last row of R is all zeros. Since \mathbf{b} is arbitrary, take \mathbf{b} so that $\left[R \mathbf{b}^{\prime}\right]$ is inconsistent. How do we know such \mathbf{b} exists? Now reverse the row operations to get $A \mathbf{x}=\mathbf{b}$ not solvable.

Example of theorem in use?

§1.4 Theorem 5

§1.4 Theorem 5

Theorem
If A is an $m \times n$ matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$, then

§1.4 Theorem 5

Theorem
If A is an $m \times n$ matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
(b) $A(c \mathbf{u})=c A(\mathbf{u})$

§1.4 Theorem 5

Theorem
If A is an $m \times n$ matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
(b) $A(c \mathbf{u})=c A(\mathbf{u})$

Proof.

Try to prove these as an exercise.

§1.4 Theorem 5

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra...

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra... namely that multiplication by an $m \times n$ matrix A defines a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra... namely that multiplication by an $m \times n$ matrix A defines a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Where have you seen linear maps before?

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra... namely that multiplication by an $m \times n$ matrix A defines a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Where have you seen linear maps before? On the vector space of smooth functions $C^{\infty}(\mathbb{R})$.

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra... namely that multiplication by an $m \times n$ matrix A defines a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Where have you seen linear maps before? On the vector space of smooth functions $C^{\infty}(\mathbb{R})$. Namely, for f a smooth function (infinitely differentiable), define $T(f)$ to be the derivative of f.

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra... namely that multiplication by an $m \times n$ matrix A defines a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Where have you seen linear maps before? On the vector space of smooth functions $C^{\infty}(\mathbb{R})$. Namely, for f a smooth function (infinitely differentiable), define $T(f)$ to be the derivative of f. Then we see that T is a linear map as well:

$$
\begin{aligned}
T(f+g) & =(f+g)^{\prime}=f^{\prime}+g^{\prime}=T(f)+T(g) \\
T(c f) & =(c f)^{\prime}=c f^{\prime}=c T(f)
\end{aligned}
$$

§1.4 Theorem 5

This theorem begins to illustrate a fundamental concept in linear algebra... namely that multiplication by an $m \times n$ matrix A defines a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Where have you seen linear maps before? On the vector space of smooth functions $C^{\infty}(\mathbb{R})$. Namely, for f a smooth function (infinitely differentiable), define $T(f)$ to be the derivative of f. Then we see that T is a linear map as well:

$$
\begin{aligned}
T(f+g) & =(f+g)^{\prime}=f^{\prime}+g^{\prime}=T(f)+T(g) \\
T(c f) & =(c f)^{\prime}=c f^{\prime}=c T(f) .
\end{aligned}
$$

The study of linear maps given by matrices is of primary importance in linear algebra.

§1.5 Homogeneous linear systems

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system?

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$.

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution?

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution? Well, we know that a consistent system has a unique solution or infinitely many solutions.

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution? Well, we know that a consistent system has a unique solution or infinitely many solutions. When do we get infinitely many solutions?

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution? Well, we know that a consistent system has a unique solution or infinitely many solutions. When do we get infinitely many solutions? When we have free variables.

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution? Well, we know that a consistent system has a unique solution or infinitely many solutions. When do we get infinitely many solutions? When we have free variables. When do we have free variables?

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution? Well, we know that a consistent system has a unique solution or infinitely many solutions. When do we get infinitely many solutions? When we have free variables. When do we have free variables? When the number of pivots is strictly less than the number of variables.

§1.5 Homogeneous linear systems

Definition

A linear system is homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$ with $A_{m \times n}$ (notation for $m \times n$ matrix) and $\mathbf{0} \in \mathbb{R}^{m}$.

What can you observe about the solution set of a homogeneous system? It always has the trivial solution of $\mathbf{x}=\mathbf{0}$. Where does this $\mathbf{0}$ live?

How can we tell if a homogeneous system has a nontrivial solution? Well, we know that a consistent system has a unique solution or infinitely many solutions. When do we get infinitely many solutions? When we have free variables. When do we have free variables? When the number of pivots is strictly less than the number of variables.

To summarize, we have the following theorem...

§1.5 Homogeneous linear systems

Theorem
If A is an $m \times n$ matrix and $m<n$ (strictly),

§1.5 Homogeneous linear systems

Theorem

If A is an $m \times n$ matrix and $m<n$ (strictly), then $A \mathbf{x}=\mathbf{0}$ always has nontrivial solutions.

§1.5 Homogeneous linear systems

Theorem

If A is an $m \times n$ matrix and $m<n$ (strictly), then $A \mathbf{x}=\mathbf{0}$ always has nontrivial solutions.

Proof.

This follows from discussion on previous slide: since the number of pivots is $\leq m<n$ and the number of variables is n, we see that we must have free variables in this case.

§1.5 Example

§1.5 Example

We now do an example to illustrate the next Theorem.

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix.

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system?

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

Suppose now we choose a specific A in RREF given by

$$
\left[\begin{array}{rrrrr}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

Suppose now we choose a specific A in RREF given by

$$
\left[\begin{array}{rrrrr}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How many free variables do we have in this case?

§1.5 Example

We now do an example to illustrate the next Theorem.
Consider $A \mathbf{x}=\mathbf{0}$ where A is a (nonzero) 4×5 matrix. Without a specific A what is the least number of free variables for this system? What about the most number of free variables for this system?

Suppose now we choose a specific A in RREF given by

$$
\left[\begin{array}{rrrrr}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How many free variables do we have in this case? As we've seen before with a single free variable, we can write a general solution to this system using a parametric vector equation...

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

$$
\mathbf{x}=\left[\begin{array}{r}
3 x_{3}+x_{5} \\
-2 x_{3}+3 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

$$
\mathbf{x}=\left[\begin{array}{r}
3 x_{3}+x_{5} \\
-2 x_{3}+3 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

What is the geometric interpretation of the solution set?

§1.5 Example

A general solution to the system $A \mathbf{x}=\mathbf{0}$ (for A defined previously) is given by:

$$
\mathbf{x}=\left[\begin{array}{r}
3 x_{3}+x_{5} \\
-2 x_{3}+3 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

What is the geometric interpretation of the solution set?
Now let $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ and consider the nonhomogeneous linear system $A \mathbf{x}=\mathbf{b}$.

§1.5 Example

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$?

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system. Geometrically, the homogeneous solutions define a plane through the origin in \mathbb{R}^{5}.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system. Geometrically, the homogeneous solutions define a plane through the origin in \mathbb{R}^{5}. Changing the \mathbf{b} translates the plane by the particular solution vector.

§1.5 Example

For A and \mathbf{b} defined above, we see that a general solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
3 \\
0 \\
-3 \\
1
\end{array}\right]
$$

How does a general solution to $A \mathbf{x}=\mathbf{b}$ relate to a general solution to $A \mathbf{x}=\mathbf{0}$? We call the constant vector \mathbf{p} a particular solution to the matrix equation $A \mathbf{x}=\mathbf{b}$. A solution to the homogeneous system is denoted by \mathbf{v}_{h}, and we note that every solution to $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{p}+\mathbf{v}_{h}$ with \mathbf{p} the particular solution and \mathbf{v}_{h} some solution to the homogeneous system. Geometrically, the homogeneous solutions define a plane through the origin in \mathbb{R}^{5}. Changing the \mathbf{b} translates the plane by the particular solution vector. What would change if A was not given to us in RREF?

§1.5 Theorem 6

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$. Let $T=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h}\right.$ satisfies $\left.A \mathbf{x}=\mathbf{0}\right\}$.

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$. Let $T=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h}\right.$ satisfies $\left.A \mathbf{x}=\mathbf{0}\right\}$. What do we need to show to prove this theorem?

§1.5 Theorem 6

Theorem

Suppose that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{v}_{h} is a solution to the homogeneous equation $\mathbf{A x}=\mathbf{0}$.

Let S be the set of solutions to $A \mathbf{x}=\mathbf{b}$. Let $T=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h}\right.$ satisfies $\left.A \mathbf{x}=\mathbf{0}\right\}$. What do we need to show to prove this theorem? The equality of sets $S=T$.

§1.5 Proof of Theorem 6

§1.5 Proof of Theorem 6

Proof.

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$?

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T):$

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$.

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$.

§1.5 Proof of Theorem 6

Proof.
$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$.
This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

$$
A(\mathbf{w}-\mathbf{p})=A \mathbf{w}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

$$
A(\mathbf{w}-\mathbf{p})=A \mathbf{w}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

Thus $\mathbf{v}_{h}:=\mathbf{w}-\mathbf{p}$ satisfies $A \mathbf{x}-\mathbf{0}$ and $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$.

§1.5 Proof of Theorem 6

Proof.

$(T \subseteq S):$
An arbitrary element of T is of the form $\mathbf{p}+\mathbf{v}_{h}$. But $A \mathbf{p}=\mathbf{b}$ and $A \mathbf{v}_{h}=\mathbf{0}$. How do we conclude that $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=\mathbf{b}$? By linearity of the map defined by A !
$(S \subseteq T)$:
For the reverse containment let $\mathbf{w} \in S$ be any solution to $A \mathbf{x}=\mathbf{b}$. This means $A \mathbf{w}=\mathbf{b}$. But we also know that $A \mathbf{p}=\mathbf{b}$. Can you see how to get a solution to $A \mathbf{x}=\mathbf{0}$ from this?

$$
A(\mathbf{w}-\mathbf{p})=A \mathbf{w}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

Thus $\mathbf{v}_{h}:=\mathbf{w}-\mathbf{p}$ satisfies $A \mathbf{x}-\mathbf{0}$ and $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$. This shows that $\mathbf{w} \in S$ and concludes the proof.

