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Just for today

I (10 minutes) Review row reduction algorithm
I (40 minutes) §1.3
I (15 minutes) Classwork



Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

 1 −2 −1 3 0
−2 4 5 −5 3

3 −6 −6 8 2


1 −2 0 10/3 0

0 0 1 1/3 0
0 0 0 0 1



How many pivots does this matrix have?

How many free variables does this matrix have?

Suppose this is the augmented matrix of a linear system. What
can you say about the solution set?

Suppose this is the coefficient matrix of a linear system. What can
you say about the solution set?
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§1.3 Vectors in Rn

Recall vectors in R2,R3,Rn. It is convenient in linear algebra to
write vectors as column vectors. That is, as n × 1 matrices.

Recall the algebraic properties of vectors. Examples?

What is the difference between a vector and a scalar?

What does it mean for two vectors to be equal?
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§1.3 Linear combinations

Definition
Given v1, . . . , vp ∈ Rn and given scalars c1, . . . , cp ∈ R, we define
the linear combination of v1, . . . , vp with the weights c1, . . . , cp
by

c1v1 + · · ·+ cpvp.

How can we interpret a linear combination of vectors
geometrically?

Let a, b ∈ R and

v1 =
[

1
0

]
and v2 =

[
0
1

]
.

What is av1 + bv2?
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§1.3 Linear span

Definition
Let v1, . . . , vp ∈ Rn. We define the span of a set of vectors as:

Span{v1, . . . , vp} := {c1v1 + · · ·+ cpvp : c1, . . . , cp ∈ R}.

Informally, the span of a set of vectors is the set of all linear
combinations of those vectors.

Span
{[

1
0

]
,

[
0
1

]
,

[
1
1

]}
= ? Span


1

0
0

 ,

0
1
0

 ,

1
1
2


 = ?
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§1.3 Some properties of span

Let u, v be nonzero vectors in Rn.

I u, v ∈ Span{u, v}
I Span{u, v, 0} = Span{u, v}
I u± v, cu ∈ Span{u, v}
I S, T ⊆ Rn and S ⊆ T implies Span{S} ⊆ Span{T}
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§1.3 Linear systems as linear combinations

Consider the vector equation

x1a1 + · · ·+ xnan = b.

Consider the linear system whose augmented matrix has columns
ai and b which we abbreviate[

a1 a2 · · · b
]

.

Next time we will prove the fundamental result that...

these objects both have the same solution set!

This means that a vector b ∈ Rm can be expressed as a linear
combination of the vectors a1, . . . , an if any only if the linear
system corresponding to

[
a1 · · · an b

]
is consistent.
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§1.3 Classwork

Suppose

[
a1 a2 a3 b

]
=

 1 0 2 −5
−2 5 0 11

2 5 8 −7

 −→
 1 0 2 0

0 1 4/5 0
0 0 0 1


Do there exist scalars x1, x2, x3 ∈ R such that

x1a1 + x2a2 + x3a3 = b?
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§1.3 Classwork

Consider

A =

 2 0 6
−1 8 5

1 −2 1

 , and b =

10
3
3

 .

Let W be the linear span of the columns of A.

Is b ∈W ?

Is

 0
8
−2

 ∈W ?
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