Lecture 03

Math 22 Summer 2017 Section 2
June 26, 2017

Just for today

- (10 minutes) Review row reduction algorithm
- (40 minutes) §1.3
- (15 minutes) Classwork

Review row reduction algorithm

Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

$$
\left[\begin{array}{rrrrr}
1 & -2 & -1 & 3 & 0 \\
-2 & 4 & 5 & -5 & 3 \\
3 & -6 & -6 & 8 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrrrr}
1 & -2 & 0 & 10 / 3 & 0 \\
0 & 0 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

$$
\left[\begin{array}{rrrrr}
1 & -2 & -1 & 3 & 0 \\
-2 & 4 & 5 & -5 & 3 \\
3 & -6 & -6 & 8 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrrrr}
1 & -2 & 0 & 10 / 3 & 0 \\
0 & 0 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

How many pivots does this matrix have?

Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

$$
\left[\begin{array}{rrrrr}
1 & -2 & -1 & 3 & 0 \\
-2 & 4 & 5 & -5 & 3 \\
3 & -6 & -6 & 8 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrrrr}
1 & -2 & 0 & 10 / 3 & 0 \\
0 & 0 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

How many pivots does this matrix have?
How many free variables does this matrix have?

Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

$$
\left[\begin{array}{rrrrr}
1 & -2 & -1 & 3 & 0 \\
-2 & 4 & 5 & -5 & 3 \\
3 & -6 & -6 & 8 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrrrr}
1 & -2 & 0 & 10 / 3 & 0 \\
0 & 0 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

How many pivots does this matrix have?
How many free variables does this matrix have?
Suppose this is the augmented matrix of a linear system. What can you say about the solution set?

Review row reduction algorithm

Use row reduction to put the following matrix is RREF.

$$
\left[\begin{array}{rrrrr}
1 & -2 & -1 & 3 & 0 \\
-2 & 4 & 5 & -5 & 3 \\
3 & -6 & -6 & 8 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrrrr}
1 & -2 & 0 & 10 / 3 & 0 \\
0 & 0 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

How many pivots does this matrix have?
How many free variables does this matrix have?
Suppose this is the augmented matrix of a linear system. What can you say about the solution set?

Suppose this is the coefficient matrix of a linear system. What can you say about the solution set?

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$.

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$. It is convenient in linear algebra to write vectors as column vectors.

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$. It is convenient in linear algebra to write vectors as column vectors. That is, as $n \times 1$ matrices.

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$. It is convenient in linear algebra to write vectors as column vectors. That is, as $n \times 1$ matrices.

Recall the algebraic properties of vectors.

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$. It is convenient in linear algebra to write vectors as column vectors. That is, as $n \times 1$ matrices.

Recall the algebraic properties of vectors. Examples?

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$. It is convenient in linear algebra to write vectors as column vectors. That is, as $n \times 1$ matrices.

Recall the algebraic properties of vectors. Examples?
What is the difference between a vector and a scalar?

§1.3 Vectors in \mathbb{R}^{n}

Recall vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{n}$. It is convenient in linear algebra to write vectors as column vectors. That is, as $n \times 1$ matrices.

Recall the algebraic properties of vectors. Examples?
What is the difference between a vector and a scalar?
What does it mean for two vectors to be equal?

§1.3 Linear combinations

§1.3 Linear combinations

Definition

Given $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ and given scalars $c_{1}, \ldots, c_{p} \in \mathbb{R}$, we define the linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with the weights c_{1}, \ldots, c_{p} by

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

§1.3 Linear combinations

Definition

Given $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ and given scalars $c_{1}, \ldots, c_{p} \in \mathbb{R}$, we define the linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with the weights c_{1}, \ldots, c_{p} by

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

How can we interpret a linear combination of vectors geometrically?

§1.3 Linear combinations

Definition

Given $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ and given scalars $c_{1}, \ldots, c_{p} \in \mathbb{R}$, we define the linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with the weights c_{1}, \ldots, c_{p} by

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

How can we interpret a linear combination of vectors geometrically?

Let $a, b \in \mathbb{R}$ and

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

§1.3 Linear combinations

Definition

Given $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ and given scalars $c_{1}, \ldots, c_{p} \in \mathbb{R}$, we define the linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with the weights c_{1}, \ldots, c_{p} by

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

How can we interpret a linear combination of vectors geometrically?

Let $a, b \in \mathbb{R}$ and

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

What is $a \mathbf{v}_{1}+b \mathbf{v}_{2}$?

§1.3 Linear span

§1.3 Linear span

Definition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$.

§1.3 Linear span

Definition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$. We define the span of a set of vectors as:

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}:=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}: c_{1}, \ldots, c_{p} \in \mathbb{R}\right\} .
$$

§1.3 Linear span

Definition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$. We define the span of a set of vectors as:

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}:=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}: c_{1}, \ldots, c_{p} \in \mathbb{R}\right\}
$$

Informally, the span of a set of vectors is the set of all linear combinations of those vectors.

§1.3 Linear span

Definition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$. We define the span of a set of vectors as:

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}:=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}: c_{1}, \ldots, c_{p} \in \mathbb{R}\right\}
$$

Informally, the span of a set of vectors is the set of all linear combinations of those vectors.
$\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}=?$

§1.3 Linear span

Definition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$. We define the span of a set of vectors as:

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}:=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}: c_{1}, \ldots, c_{p} \in \mathbb{R}\right\}
$$

Informally, the span of a set of vectors is the set of all linear combinations of those vectors.
$\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}=?$

$$
\text { Span }\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right\}=?
$$

§1.3 Some properties of span

§1.3 Some properties of span

Let \mathbf{u}, \mathbf{v} be nonzero vectors in \mathbb{R}^{n}.

§1.3 Some properties of span

Let \mathbf{u}, \mathbf{v} be nonzero vectors in \mathbb{R}^{n}.
${ }^{-} \mathbf{u}, \mathbf{v} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$

§1.3 Some properties of span

Let \mathbf{u}, \mathbf{v} be nonzero vectors in \mathbb{R}^{n}.

- $\mathbf{u}, \mathbf{v} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$
- $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{0}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$

§1.3 Some properties of span

Let \mathbf{u}, \mathbf{v} be nonzero vectors in \mathbb{R}^{n}.

- $\mathbf{u}, \mathbf{v} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$
- $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{0}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$
- $\mathbf{u} \pm \mathbf{v}, c \mathbf{u} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$

§1.3 Some properties of span

Let \mathbf{u}, \mathbf{v} be nonzero vectors in \mathbb{R}^{n}.

- $\mathbf{u}, \mathbf{v} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$
- $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{0}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$
- $\mathbf{u} \pm \mathbf{v}, c \mathbf{u} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$
- $S, T \subseteq \mathbb{R}^{n}$ and $S \subseteq T$ implies $\operatorname{Span}\{S\} \subseteq \operatorname{Span}\{T\}$

§1.3 Linear systems as linear combinations

§1.3 Linear systems as linear combinations

Consider the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

§1.3 Linear systems as linear combinations

Consider the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Consider the linear system whose augmented matrix has columns \mathbf{a}_{i} and \mathbf{b} which we abbreviate

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{b}
\end{array}\right] .
$$

§1.3 Linear systems as linear combinations

Consider the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

Consider the linear system whose augmented matrix has columns \mathbf{a}_{i} and \mathbf{b} which we abbreviate

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{b}
\end{array}\right] .
$$

Next time we will prove the fundamental result that...
these objects both have the same solution set!

§1.3 Linear systems as linear combinations

Consider the vector equation

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b} .
$$

Consider the linear system whose augmented matrix has columns \mathbf{a}_{i} and \mathbf{b} which we abbreviate

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{b}
\end{array}\right] .
$$

Next time we will prove the fundamental result that...
these objects both have the same solution set!

This means that a vector $\mathbf{b} \in \mathbb{R}^{m}$ can be expressed as a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if any only if the linear system corresponding to $\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n} \mathbf{b}\right]$ is consistent.

§1.3 Classwork

§1.3 Classwork

Suppose

$$
\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}
\end{array} \mathbf{b}\right]=\left[\begin{array}{rrrr}
1 & 0 & 2 & -5 \\
-2 & 5 & 0 & 11 \\
2 & 5 & 8 & -7
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 1 & 4 / 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

§1.3 Classwork

Suppose

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 2 & -5 \\
-2 & 5 & 0 & 11 \\
2 & 5 & 8 & -7
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 1 & 4 / 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Do there exist scalars $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ such that

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b} ?
$$

§1.3 Classwork

§1.3 Classwork

Consider

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right]
$$

§1.3 Classwork

Consider

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right]
$$

Let W be the linear span of the columns of A.

§1.3 Classwork

Consider

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right]
$$

Let W be the linear span of the columns of A.
Is $\mathbf{b} \in W$?

§1.3 Classwork

Consider

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right]
$$

Let W be the linear span of the columns of A.
Is $\mathbf{b} \in W$?
Is $\left[\begin{array}{r}0 \\ 8 \\ -2\end{array}\right] \in W$?

