Lecture 01

Math 22 Summer 2017 Section 2
June 23, 2017

Why Linear Algebra?

Why Linear Algebra?

- Solutions to differential equations

Why Linear Algebra?

- Solutions to differential equations
- Applications such as page rank algorithms and data compression

Why Linear Algebra?

- Solutions to differential equations
- Applications such as page rank algorithms and data compression
- Linear algebra is ubiquitous in the pure and applied mathematical sciences

Why Linear Algebra?

- Solutions to differential equations
- Applications such as page rank algorithms and data compression
- Linear algebra is ubiquitous in the pure and applied mathematical sciences
- Linear objects are tractable by computer

Goals of this course

Goals of this course

- Introduce the mechanical tools used in linear algebra

Goals of this course

- Introduce the mechanical tools used in linear algebra
- Provide an introduction to abstract mathematics: definitions, theorems, proofs in the context of linear algebra

Goals of this course

- Introduce the mechanical tools used in linear algebra
- Provide an introduction to abstract mathematics: definitions, theorems, proofs in the context of linear algebra
- Give interesting examples of applications of linear algebra

Math 22 Course Information

Math 22 Course Information

https://math.dartmouth.edu/~m22x17

§1.1 Systems of Linear Equations

§1.1 Systems of Linear Equations

Definition

A linear equation in the variables x_{1}, \ldots, x_{n} is an equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

where b and the coefficients a_{i} are real or complex numbers.

§1.1 Systems of Linear Equations

Definition

A linear equation in the variables x_{1}, \ldots, x_{n} is an equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

where b and the coefficients a_{i} are real or complex numbers.
We are interested in systems of linear equations, or linear systems, which are finite collections of linear equations all with the same variables.

§1.1 Systems of Linear Equations

Definition

A linear equation in the variables x_{1}, \ldots, x_{n} is an equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

where b and the coefficients a_{i} are real or complex numbers.
We are interested in systems of linear equations, or linear systems, which are finite collections of linear equations all with the same variables.

You've almost certainly encountered linear equations previously. Examples?

§1.1 Systems of Linear Equations

Definition

A linear equation in the variables x_{1}, \ldots, x_{n} is an equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

where b and the coefficients a_{i} are real or complex numbers.
We are interested in systems of linear equations, or linear systems, which are finite collections of linear equations all with the same variables.

You've almost certainly encountered linear equations previously. Examples?

What's an example of a system of equations that is not linear?

§1.1 Examples (e)

§1.1 Examples (3)

1. plane in \mathbb{R}^{3}

$$
2 x_{1}+3 x_{2}+5 x_{3}=7
$$

§1.1 Examples (e)

1. plane in \mathbb{R}^{3}

$$
2 x_{1}+3 x_{2}+5 x_{3}=7
$$

2. non parallel planes in \mathbb{R}^{3}

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+7 x_{3}=11
\end{aligned}
$$

§1.1 Examples (3)

1. plane in \mathbb{R}^{3}

$$
2 x_{1}+3 x_{2}+5 x_{3}=7
$$

2. non parallel planes in \mathbb{R}^{3}

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+7 x_{3}=11
\end{aligned}
$$

3. parallel planes in \mathbb{R}^{3}

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+5 x_{3}=11
\end{aligned}
$$

§1.1 Examples (e)

1. plane in \mathbb{R}^{3}

$$
2 x_{1}+3 x_{2}+5 x_{3}=7
$$

2. non parallel planes in \mathbb{R}^{3}

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+7 x_{3}=11
\end{aligned}
$$

3. parallel planes in \mathbb{R}^{3}

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+5 x_{3}=11
\end{aligned}
$$

4. same plane in \mathbb{R}^{3}

$$
\begin{aligned}
2 x_{1}+3 x_{2}+5 x_{3} & =7 \\
6 x_{1}+9 x_{2}+15 x_{3} & =21
\end{aligned}
$$

§1.1 Representing linear systems as matrices

§1.1 Representing linear systems as matrices

Consider the linear system

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+7 x_{3}=11 .
\end{aligned}
$$

§1.1 Representing linear systems as matrices

Consider the linear system

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+7 x_{3}=11 .
\end{aligned}
$$

From this we extract a coefficient matrix and augmented matrix given below:

$$
\left[\begin{array}{lll}
2 & 3 & 5 \\
2 & 3 & 7
\end{array}\right], \quad\left[\begin{array}{cccc}
2 & 3 & 5 & 7 \\
2 & 3 & 7 & 11
\end{array}\right]
$$

§1.1 Representing linear systems as matrices

Consider the linear system

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 2 x_{1}+3 x_{2}+7 x_{3}=11 .
\end{aligned}
$$

From this we extract a coefficient matrix and augmented matrix given below:

$$
\left[\begin{array}{lll}
2 & 3 & 5 \\
2 & 3 & 7
\end{array}\right], \quad\left[\begin{array}{cccc}
2 & 3 & 5 & 7 \\
2 & 3 & 7 & 11
\end{array}\right]
$$

Here we have a 2×3 matrix and a 2×4 matrix.

§1.1 Representing linear systems as matrices

As an example, consider the linear system

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5
\end{aligned}
$$

§1.1 Representing linear systems as matrices

As an example, consider the linear system

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5
\end{aligned}
$$

Find the corresponding coefficient matrix and augmented matrix.

§1.1 Representing linear systems as matrices

As an example, consider the linear system

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5
\end{aligned}
$$

Find the corresponding coefficient matrix and augmented matrix.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 2 & 2 & 0 \\
0 & 0 & 1 & 3 \\
-2 & 3 & 2 & 1
\end{array}\right], \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
-2 & 3 & 2 & 1 & 5
\end{array}\right]
$$

§1.1 Representing linear systems as matrices

As an example, consider the linear system

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5
\end{aligned}
$$

Find the corresponding coefficient matrix and augmented matrix.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 2 & 2 & 0 \\
0 & 0 & 1 & 3 \\
-2 & 3 & 2 & 1
\end{array}\right], \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
-2 & 3 & 2 & 1 & 5
\end{array}\right]
$$

We do this because we want to find solutions to linear systems.

§1.1 Solving Systems of Linear Equations

Definition

A solution to a linear system is an assignment of the variables x_{i} such that all equations in the system are satisfied.

§1.1 Solving Systems of Linear Equations

Definition

A solution to a linear system is an assignment of the variables x_{i} such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

§1.1 Solving Systems of Linear Equations

Definition

A solution to a linear system is an assignment of the variables x_{i} such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

Definition

A linear system is consistent if it has at least one solution.

§1.1 Solving Systems of Linear Equations

Definition

A solution to a linear system is an assignment of the variables x_{i} such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

Definition

A linear system is consistent if it has at least one solution. A linear system is inconsistent if it has no solutions.

§1.1 Solving Systems of Linear Equations

Definition

A solution to a linear system is an assignment of the variables x_{i} such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

Definition

A linear system is consistent if it has at least one solution. A linear system is inconsistent if it has no solutions.

Let's see how to solve the linear system from before:

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5 .
\end{aligned}
$$

§1.1 Solving Systems of Linear Equations

Replace row 4 with row 4 plus twice row $1\left(R_{4} \leftarrow R_{4}+2 R_{1}\right)$

§1.1 Solving Systems of Linear Equations

Replace row 4 with row 4 plus twice row $1\left(R_{4} \leftarrow R_{4}+2 R_{1}\right)$

§1.1 Solving Systems of Linear Equations

Replace row 4 with row 4 plus twice row $1\left(R_{4} \leftarrow R_{4}+2 R_{1}\right)$

$$
\left.\begin{array}{rl}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5
\end{array}\right] \begin{aligned}
& x_{1}-2 x_{4}=-3 \\
& 2 x_{2}+2 x_{3}=0 \\
& x_{3}+3 x_{4}=1 \\
& 3 x_{2}+2 x_{3}-3 x_{4}=-1 \\
& \hline
\end{aligned}
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
-2 & 3 & 2 & 1 & 5
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 3 & 2 & -3 & -1
\end{array}\right]
$$

§1.1 Solving Systems of Linear Equations

Replace row 2 with (1/2) row $2\left(R_{2} \leftarrow(1 / 2) R_{2}\right)$

§1.1 Solving Systems of Linear Equations

Replace row 2 with (1/2) row $2\left(R_{2} \leftarrow(1 / 2) R_{2}\right)$

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
3 x_{2}+2 x_{3}-3 x_{4} & =-1
\end{aligned} \longrightarrow \begin{aligned}
x_{1}-2 x_{4} & =-3 \\
x_{2}+x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
3 x_{2}+2 x_{3}-3 x_{4} & =-1
\end{aligned}
$$

§1.1 Solving Systems of Linear Equations

Replace row 2 with (1/2) row $2\left(R_{2} \leftarrow(1 / 2) R_{2}\right)$

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
3 x_{2}+2 x_{3}-3 x_{4} & =-1
\end{aligned} \longrightarrow \begin{aligned}
x_{1}-2 x_{4} & =-3 \\
x_{2}+x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
3 x_{2}+2 x_{3}-3 x_{4} & =-1
\end{aligned}
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 3 & 2 & -3 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 1 & 0 \\
0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 3 & 2 & -3 \\
\hline
\end{array}\right]
$$

§1.1 Solving Systems of Linear Equations

$$
R_{4} \leftarrow R_{4}-3 R_{2}
$$

§1.1 Solving Systems of Linear Equations

$$
R_{4} \leftarrow R_{4}-3 R_{2}
$$

$\begin{aligned} x_{1}-2 x_{4} & =-3 \\ x_{2}+x_{3} & =0 \\ x_{3}+3 x_{4} & =1 \\ 3 x_{2}+2 x_{3}-3 x_{4} & =-1 \end{aligned}$	$\begin{aligned} x_{1}-2 x_{4} & =-3 \\ x_{2}+x_{3} & =0 \\ x_{3}+3 x_{4} & =1 \\ -x_{3}-3 x_{4} & =-1 \end{aligned}$

§1.1 Solving Systems of Linear Equations

$$
R_{4} \leftarrow R_{4}-3 R_{2}
$$

$x_{1}-2 x_{4}$	$=-3$		
$x_{2}+x_{3}$	$=0$		
$x_{3}+3 x_{4}$	$=1$		
$3 x_{2}+2 x_{3}-3 x_{4}$	$=-1$	\longrightarrow	$x_{1}-2 x_{4}=-3$
---:			
$x_{2}+x_{3}$	$=0$		
:---:			
$x_{3}+3 x_{4}=1$			
$-x_{3}-3 x_{4}=-1$			

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 3 & 2 & -3 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & -1 & -3 & -1
\end{array}\right]
$$

§1.1 Solving Systems of Linear Equations

$$
\begin{aligned}
& R_{2} \leftarrow R_{2}-R_{3} \\
& R_{4} \leftarrow R_{4}+R_{3}
\end{aligned}
$$

§1.1 Solving Systems of Linear Equations

$$
\begin{aligned}
& R_{2} \leftarrow R_{2}-R_{3} \\
& R_{4} \leftarrow R_{4}+R_{3}
\end{aligned}
$$

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
x_{2}+x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-x_{3}-3 x_{4} & =-1
\end{aligned}
$$

\longrightarrow| $x_{1}-2 x_{4}$ | $=-3$ |
| ---: | :--- |
| $x_{2}-3 x_{4}$ | $=-1$ |
| $x_{3}+3 x_{4}$ | $=1$ |
| 0 | $=0$ |

§1.1 Solving Systems of Linear Equations

$$
\begin{aligned}
& R_{2} \leftarrow R_{2}-R_{3} \\
& R_{4} \leftarrow R_{4}+R_{3}
\end{aligned}
$$

$x_{1}-2 x_{4}$	$=-3$
$x_{2}-3 x_{4}$	$=-1$
$x_{3}+3 x_{4}$	$=1$
0	$=0$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & -1 & -3 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & -3 \\
0 & 1 & 0 & -3 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

§1.1 Solving Systems of Linear Equations

We find that for every assignment of x_{4} there are unique assignments of x_{1}, x_{2}, x_{3} satisfying the linear system:

§1.1 Solving Systems of Linear Equations

We find that for every assignment of x_{4} there are unique assignments of x_{1}, x_{2}, x_{3} satisfying the linear system:

$$
\begin{aligned}
& x_{1}=2 x_{4}-3 \\
& x_{2}=3 x_{4}-1 \\
& x_{3}=1-3 x_{4} .
\end{aligned}
$$

§1.1 Solving Systems of Linear Equations

We find that for every assignment of x_{4} there are unique assignments of x_{1}, x_{2}, x_{3} satisfying the linear system:

$$
\begin{aligned}
& x_{1}=2 x_{4}-3 \\
& x_{2}=3 x_{4}-1 \\
& x_{3}=1-3 x_{4} .
\end{aligned}
$$

Alternatively, the set of solutions to the linear system is given by

$$
\left\{\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
3 \\
-3 \\
1
\end{array}\right]: x_{4} \in \mathbb{R}\right\} \subset \mathbb{R}^{4}
$$

§1.1 Solving Systems of Linear Equations

We find that for every assignment of x_{4} there are unique assignments of x_{1}, x_{2}, x_{3} satisfying the linear system:

$$
\begin{aligned}
& x_{1}=2 x_{4}-3 \\
& x_{2}=3 x_{4}-1 \\
& x_{3}=1-3 x_{4} .
\end{aligned}
$$

Alternatively, the set of solutions to the linear system is given by

$$
\left\{\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
3 \\
-3 \\
1
\end{array}\right]: x_{4} \in \mathbb{R}\right\} \subset \mathbb{R}^{4}
$$

Here we emphasize that solution sets are sets of vectors.

§1.1 Elementary Row Operations

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows
- (scaling) multiply all entries of a row by a nonzero constant

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows
- (scaling) multiply all entries of a row by a nonzero constant

We say two matrices are row-equivalent if one is obtained from the other by finitely many row operations.

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows
- (scaling) multiply all entries of a row by a nonzero constant

We say two matrices are row-equivalent if one is obtained from the other by finitely many row operations.

One proves that row operations do not change solution sets.

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

What can we say about the solutions?

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

What can we say about the solutions?
The system is consistent and has a unique solution.

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

What can we say about the solutions?
The system is consistent and has a unique solution. It is $\left(x_{1}, x_{2}, x_{3}\right)=(1,-2,4)$.

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

What can we say about the solutions?
The system is consistent and has a unique solution. It is $\left(x_{1}, x_{2}, x_{3}\right)=(1,-2,4)$.

Moreover, any augmented matrix that is row equivalent to the one above corresponds to a linear system with the same unique solution.

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

What can we say about the solutions?

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

What can we say about the solutions?
The system has no solutions (inconsistent).

§1.1 Examples

Suppose we have the following linear system (augmented matrix):

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

What can we say about the solutions?
The system has no solutions (inconsistent).
Moreover, any augmented matrix that is row equivalent to the one above corresponds to an inconsistent system.

§1.1 Practice Problems

https://math.dartmouth.edu/~m22x17/sched.html

