

Lecture 01

Math 22 Summer 2017 Section 2 June 23, 2017

Why Linear Algebra?

Solutions to differential equations

- Solutions to differential equations
- Applications such as page rank algorithms and data compression

- Solutions to differential equations
- Applications such as page rank algorithms and data compression
- Linear algebra is ubiquitous in the pure and applied mathematical sciences

- Solutions to differential equations
- Applications such as page rank algorithms and data compression
- Linear algebra is ubiquitous in the pure and applied mathematical sciences
- Linear objects are tractable by computer

Goals of this course

Introduce the mechanical tools used in linear algebra

- Introduce the mechanical tools used in linear algebra
- Provide an introduction to abstract mathematics: definitions, theorems, proofs in the context of linear algebra

- Introduce the mechanical tools used in linear algebra
- Provide an introduction to abstract mathematics: definitions, theorems, proofs in the context of linear algebra
- Give interesting examples of applications of linear algebra

Math 22 Course Information

https://math.dartmouth.edu/~m22x17

§1.1 Systems of Linear Equations

A linear equation in the variables x_1, \ldots, x_n is an equation

$$a_1x_1+\cdots+a_nx_n=b$$

where b and the **coefficients** a_i are real or complex numbers.

1769

Definition

A linear equation in the variables x_1, \ldots, x_n is an equation

$$a_1x_1+\cdots+a_nx_n=b$$

where b and the **coefficients** a_i are real or complex numbers.

We are interested in **systems of linear equations**, or **linear systems**, which are finite collections of linear equations all with the same variables.

A linear equation in the variables x_1, \ldots, x_n is an equation

$$a_1x_1+\cdots+a_nx_n=b$$

where b and the **coefficients** a_i are real or complex numbers.

We are interested in **systems of linear equations**, or **linear systems**, which are finite collections of linear equations all with the same variables.

You've almost certainly encountered linear equations previously. Examples?

A linear equation in the variables x_1, \ldots, x_n is an equation

$$a_1x_1+\cdots+a_nx_n=b$$

where b and the **coefficients** a_i are real or complex numbers.

We are interested in **systems of linear equations**, or **linear systems**, which are finite collections of linear equations all with the same variables.

You've almost certainly encountered linear equations previously. Examples?

What's an example of a system of equations that is not linear?

1. plane in \mathbb{R}^3

 $2x_1 + 3x_2 + 5x_3 = 7$

§1.1 Examples 😇

1. plane in \mathbb{R}^3

$$2x_1 + 3x_2 + 5x_3 = 7$$

2. non parallel planes in
$$\mathbb{R}^3$$

 $2x_1 + 3x_2 + 5x_3 = 7$ $2x_1 + 3x_2 + 7x_3 = 11$

§1.1 Examples 😇

1. plane in \mathbb{R}^3

$$2x_1 + 3x_2 + 5x_3 = 7$$

2. non parallel planes in
$$\mathbb{R}^3$$

$$2x_1 + 3x_2 + 5x_3 = 7$$
$$2x_1 + 3x_2 + 7x_3 = 11$$

3. parallel planes in \mathbb{R}^3

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$2x_1 + 3x_2 + 5x_3 = 11$$

§1.1 Examples 😇

1. plane in \mathbb{R}^3

$$2x_1 + 3x_2 + 5x_3 = 7$$

2. non parallel planes in
$$\mathbb{R}^3$$

$$2x_1 + 3x_2 + 5x_3 = 7$$
$$2x_1 + 3x_2 + 7x_3 = 11$$

3. parallel planes in \mathbb{R}^3

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$2x_1 + 3x_2 + 5x_3 = 11$$

4. same plane in \mathbb{R}^3

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$6x_1 + 9x_2 + 15x_3 = 21$$

§1.1 Representing linear systems as matrices

Consider the linear system

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$2x_1 + 3x_2 + 7x_3 = 11.$$

Consider the linear system

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$2x_1 + 3x_2 + 7x_3 = 11.$$

From this we extract a **coefficient matrix** and **augmented matrix** given below:

$$\begin{bmatrix} 2 & 3 & 5 \\ 2 & 3 & 7 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 5 & 7 \\ 2 & 3 & 7 & 11 \end{bmatrix}$$

Consider the linear system

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$2x_1 + 3x_2 + 7x_3 = 11.$$

From this we extract a **coefficient matrix** and **augmented matrix** given below:

$$\begin{bmatrix} 2 & 3 & 5 \\ 2 & 3 & 7 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 5 & 7 \\ 2 & 3 & 7 & 11 \end{bmatrix}$$

Here we have a 2×3 matrix and a 2×4 matrix.

§1.1 Representing linear systems as matrices

As an example, consider the linear system

$$x_1 - 2x_4 = -3$$
$$2x_2 + 2x_3 = 0$$
$$x_3 + 3x_4 = 1$$
$$2x_1 + 3x_2 + 2x_3 + x_4 = 5$$

As an example, consider the linear system

$$x_1 - 2x_4 = -3$$
$$2x_2 + 2x_3 = 0$$
$$x_3 + 3x_4 = 1$$
$$-2x_1 + 3x_2 + 2x_3 + x_4 = 5$$

Find the corresponding coefficient matrix and augmented matrix.

As an example, consider the linear system

$$x_1 - 2x_4 = -3$$
$$2x_2 + 2x_3 = 0$$
$$x_3 + 3x_4 = 1$$
$$-2x_1 + 3x_2 + 2x_3 + x_4 = 5$$

Find the corresponding coefficient matrix and augmented matrix.

$$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ -2 & 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ -2 & 3 & 2 & 1 & 5 \end{bmatrix}$$

As an example, consider the linear system

$$x_1 - 2x_4 = -3$$

$$2x_2 + 2x_3 = 0$$

$$x_3 + 3x_4 = 1$$

$$-2x_1 + 3x_2 + 2x_3 + x_4 = 5$$

Find the corresponding coefficient matrix and augmented matrix.

$$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ -2 & 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ -2 & 3 & 2 & 1 & 5 \end{bmatrix}$$

We do this because we want to find *solutions* to linear systems.

§1.1 Solving Systems of Linear Equations

Definition

A **solution** to a linear system is an assignment of the variables x_i such that all equations in the system are satisfied.

§1.1 Solving Systems of Linear Equations

Definition

A **solution** to a linear system is an assignment of the variables x_i such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

A **solution** to a linear system is an assignment of the variables x_i such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

Definition

A linear system is **consistent** if it has at least one solution.

A **solution** to a linear system is an assignment of the variables x_i such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

Definition

A linear system is **consistent** if it has at least one solution. A linear system is **inconsistent** if it has no solutions.

A **solution** to a linear system is an assignment of the variables x_i such that all equations in the system are satisfied.

A linear system can have no solutions, a unique solution, or infinitely many solutions. (intersection of hyperplanes)

Definition

A linear system is **consistent** if it has at least one solution. A linear system is **inconsistent** if it has no solutions.

Let's see how to solve the linear system from before:

$$x_1 - 2x_4 = -3$$

$$2x_2 + 2x_3 = 0$$

$$x_3 + 3x_4 = 1$$

$$-2x_1 + 3x_2 + 2x_3 + x_4 = 5.$$

§1.1 Solving Systems of Linear Equations

Replace row 4 with row 4 plus twice row 1 ($R_4 \leftarrow R_4 + 2R_1$)

Replace row 4 with row 4 plus twice row 1 ($R_4 \leftarrow R_4 + 2R_1$)

$$x_{1} - 2x_{4} = -3$$

$$2x_{2} + 2x_{3} = 0$$

$$x_{3} + 3x_{4} = 1$$

$$-2x_{1} + 3x_{2} + 2x_{3} + x_{4} = 5$$

$$x_{1} - 2x_{4} = -3$$

$$2x_{2} + 2x_{3} = 0$$

$$x_{3} + 3x_{4} = 1$$

$$3x_{2} + 2x_{3} - 3x_{4} = -1$$

Replace row 4 with row 4 plus twice row 1 ($R_4 \leftarrow R_4 + 2R_1$)

$$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ -2 & 3 & 2 & 1 & 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 3 & 2 & -3 & -1 \end{bmatrix}$$

Replace row 2 with (1/2) row 2 ($R_2 \leftarrow (1/2)R_2$)

Replace row 2 with (1/2) row 2 $(R_2 \leftarrow (1/2)R_2)$

Replace row 2 with (1/2) row 2 ($R_2 \leftarrow (1/2)R_2$)

$$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 3 & 2 & -3 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 3 & 2 & -3 & -1 \end{bmatrix}$$

 $R_4 \leftarrow R_4 - 3R_2$

$$R_4 \leftarrow R_4 - 3R_2$$

$$x_{1} - 2x_{4} = -3$$

$$x_{2} + x_{3} = 0$$

$$x_{3} + 3x_{4} = 1$$

$$3x_{2} + 2x_{3} - 3x_{4} = -1$$

$$x_{1} - 2x_{4} = -3$$

$$x_{2} + x_{3} = 0$$

$$x_{3} + 3x_{4} = 1$$

$$-x_{3} - 3x_{4} = -1$$

$$R_4 \leftarrow R_4 - 3R_2$$

$$R_2 \leftarrow R_2 - R_3$$
$$R_4 \leftarrow R_4 + R_3$$

$$R_2 \leftarrow R_2 - R_3$$
$$R_4 \leftarrow R_4 + R_3$$

$$R_2 \leftarrow R_2 - R_3$$
$$R_4 \leftarrow R_4 + R_3$$

We find that for every assignment of x_4 there are unique assignments of x_1, x_2, x_3 satisfying the linear system:

We find that for every assignment of x_4 there are unique assignments of x_1, x_2, x_3 satisfying the linear system:

$$x_1 = 2x_4 - 3$$

$$x_2 = 3x_4 - 1$$

$$x_3 = 1 - 3x_4.$$

1769

We find that for every assignment of x_4 there are unique assignments of x_1, x_2, x_3 satisfying the linear system:

$$x_1 = 2x_4 - 3$$

$$x_2 = 3x_4 - 1$$

$$x_3 = 1 - 3x_4.$$

Alternatively, the set of solutions to the linear system is given by

$$\left\{ \begin{bmatrix} -3\\ -1\\ 1\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2\\ 3\\ -3\\ 1 \end{bmatrix} : x_4 \in \mathbb{R} \right\} \subset \mathbb{R}^4.$$

1769

We find that for every assignment of x_4 there are unique assignments of x_1, x_2, x_3 satisfying the linear system:

$$x_1 = 2x_4 - 3$$

$$x_2 = 3x_4 - 1$$

$$x_3 = 1 - 3x_4.$$

Alternatively, the set of solutions to the linear system is given by

$$\left\{ \begin{bmatrix} -3\\-1\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} 2\\3\\-3\\1 \end{bmatrix} : x_4 \in \mathbb{R} \right\} \subset \mathbb{R}^4.$$

Here we emphasize that solution sets are sets of vectors.

§1.1 Elementary Row Operations

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

§1.1 Elementary Row Operations

We've seen that operations on the linear system correspond to operations on the corresponding augmented matrix.

Definition

Elementary row operations consist of the following matrix operations:

Definition

Elementary row operations consist of the following matrix operations:

 (replacement) replace one row by the sum of itself and a multiple of a different row

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows
- (scaling) multiply all entries of a row by a nonzero constant

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows
- (scaling) multiply all entries of a row by a nonzero constant

We say two matrices are **row-equivalent** if one is obtained from the other by finitely many row operations.

Definition

Elementary row operations consist of the following matrix operations:

- (replacement) replace one row by the sum of itself and a multiple of a different row
- (interchange) interchange two rows
- (scaling) multiply all entries of a row by a nonzero constant

We say two matrices are **row-equivalent** if one is obtained from the other by finitely many row operations.

One proves that row operations do not change solution sets.

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

What can we say about the solutions?

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

What can we say about the solutions?

The system is consistent and has a unique solution.

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

What can we say about the solutions?

The system is consistent and has a unique solution. It is $(x_1, x_2, x_3) = (1, -2, 4)$.

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

What can we say about the solutions?

The system is consistent and has a unique solution. It is $(x_1, x_2, x_3) = (1, -2, 4)$.

Moreover, any augmented matrix that is row equivalent to the one above corresponds to a linear system with the same unique solution.

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

What can we say about the solutions?

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

What can we say about the solutions?

The system has no solutions (inconsistent).

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

What can we say about the solutions?

The system has no solutions (inconsistent).

Moreover, any augmented matrix that is row equivalent to the one above corresponds to an inconsistent system.

https://math.dartmouth.edu/~m22x17/sched.html