MATH 22 LECTURE 29 CLASSWORK

AUGUST 23, 2017
(1) Let $A=\left[\begin{array}{ll}-1 & 0 \\ -1 & 0\end{array}\right]$.
(a) Maximize $\|A \mathbf{x}\|$ subject to the constraint that $\|\mathbf{x}\|=1$.
(b) Compute the SVD of A and A^{T}.
(c) Find orthonormal bases for as many fundamental spaces as possible!
(d) What is the best rank 1 approximation of A ?
(2) Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & -1\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}2 \\ 0 \\ -5\end{array}\right]$.
(a) Find all least-squares solutions to $A \mathbf{x}=\mathbf{b}$.
(b) Let $W=\operatorname{Col} A$. Decompose $\mathbf{b}=\hat{\mathbf{b}}+\mathbf{z}$ with $\hat{\mathbf{b}} \in W$ and $\mathbf{z} \in W^{\perp}$. Prove that this decomposition is unique.
(c) Can we compute the $Q R$-factorization of A ?
(3) Let $A=\left[\begin{array}{rr}4 & -2 \\ 1 & 1\end{array}\right]$.
(a) Check that A is diagonalizable and diagonalize it.
(b) Is the matrix P unique? If so, prove it. If not, provide an example.
(c) Compute $A^{100}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(4) Consider the "web" given below:

(a) Use the PageRank algorithm with $\alpha=1$ to find a probability vector that measures the importance of each node. Explain how the algorithm changes if we instead let $\alpha=0.85$.
(b) How do you know that the steady-state vector (of the dynamical system defined by A) is unique?

