Gram-Schmidt Process and QR-Factorization Worksheet

August 14th, 2017

Let $A=\left[\begin{array}{ccc}3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8\end{array}\right]$. Let x_{1}, x_{2}, and x_{3} be the columns of A. If we let

$$
v_{1}=x_{1}=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
3
\end{array}\right] \text { and } v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{c}
-5 \\
1 \\
5 \\
-7
\end{array}\right]-\frac{-40}{20}\left[\begin{array}{c}
3 \\
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
3 \\
-1
\end{array}\right]
$$

then $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=\operatorname{Span}\left\{x_{1}, x_{2}\right\}$ and v_{1} and v_{2} are orthogonal.

1. Use Gram-Schmidt to find v_{3} so that $\left\{v_{1}, v_{2}, v_{3}\right\}$ forms an orthogonal basis for $\operatorname{Col}(\mathrm{A})$.
2. Normalize v_{1}, v_{2}, and v_{3}. This gives us an orthonormal basis for $\operatorname{Col}(\mathrm{A})$.
3. Find the QR factorization of A . The normalized vectors from part 2 make up the columns of Q. One way to find R is to notice that

$$
R=Q^{T} A .
$$

Why is that true? (Hint: last Wednesday's class)

