Your name:
Instructor (please circle): Alex Barnett Michael Musty
Math 22 Summer 2017, Homework 9, due start of Wed Aug 23 class
This one is shorter since you have 2 days less.
(1) Linear regression! Let x_{1} be the intercept and x_{2} be the slope for a general linear function $y(t)=x_{1}+x_{2} t$. Find its least squares fit to the data $(0,0),(2,-2)$, and $(3,4)$, which are three points (t, y) in the plane. Here's how to set up the linear system (you don't need to read Sec. 6.6 unless interested): The first point says $x_{1}+x_{2} .0=0$, the next says $x_{1}+x_{2} .2=-2$, and the last says $x_{1}+x_{2} .3=4$.
(a) The system is inconsistent. Find the least squares solution vector(s) $\hat{\mathbf{x}}=\left[\begin{array}{l}\hat{x}_{1} \\ \hat{x}_{2}\end{array}\right]$.

You've now learned the best-fit intercept \hat{x}_{1} and slope \hat{x}_{2} ! Is this solution unique?
(b) Let A be any matrix, possibly rectangular. Prove that if $A^{T} A$ is invertible, then the columns of A are linearly independent.
(2) (a) Consider the matrix $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$. Over all vectors \mathbf{x} in \mathbb{R}^{3} with $\|\mathbf{x}\|=1$, what is the largest $\|A \mathbf{x}\|$ can be? [Hint: if it helps, exploit that that $A A^{T}$ and $A^{T} A$ have identical nonzero eigenvalues.]
(b) Compute by hand the full SVD of the previous A, ie give U, Σ, and V. [Hints: find the third column of V however you like, and make sure that your \mathbf{u}_{j} vectors match your \mathbf{v}_{j} vectors in ordering and sign]

