Your name:

Instructor (please circle):

Alex Barnett

Michael Musty

Math 22 Summer 2017, Homework 9, due start of Wed Aug 23 class This one is shorter since you have 2 days less.

- (1) Linear regression! Let x_1 be the intercept and x_2 be the slope for a general linear function
- $y(t) = x_1 + x_2 t$. Find its *least squares fit* to the data (0,0), (2,-2), and (3,4), which are three points (t, y) in the plane. Here's how to set up the linear system (you don't need to read Sec. 6.6 unless interested): The first point says $x_1 + x_2 . 0 = 0$, the next says $x_1 + x_2 . 2 = -2$, and the last says $x_1 + x_2 . 3 = 4$.
 - (a) The system is inconsistent. Find the least squares solution vector(s) $\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$.

You've now learned the best-fit intercept \hat{x}_1 and slope \hat{x}_2 ! Is this solution unique?

(b) Let A be any matrix, possibly rectangular. Prove that if $A^T A$ is invertible, then the columns of A are linearly independent.

(2) (a) Consider the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Over all vectors \mathbf{x} in \mathbb{R}^3 with $\|\mathbf{x}\| = 1$, what is the largest $\|A\mathbf{x}\|$ can be? [Hint: if it helps, exploit that that AA^T and A^TA have identical *nonzero* eigenvalues.]

(b) Compute by hand the full SVD of the previous A, ie give U, Σ , and V. [Hints: find the third column of V however you like, and make sure that your \mathbf{u}_j vectors match your \mathbf{v}_j vectors in ordering and sign]